Skeletal Development - Wnts Are in Control

  • Hartmann, Christine (Research Institute of Molecular Pathology)
  • Received : 2007.10.02
  • Accepted : 2007.10.04
  • Published : 2007.10.31


Approximately 200 individual skeletal elements, which differ in shape and size, are the building blocks of the vertebrate skeleton. Various features of the individual skeletal elements, such as their location, shape, growth and differentiation rate, are being determined during embryonic development. A few skeletal elements, such as the lateral halves of the clavicle and parts of the skull are formed by a process called intramembranous ossification, whereby mesenchymal cells differentiate directly into osteoblasts, while the majority of skeletal elements are formed via endochondral ossification. The latter process starts with the formation of a cartilaginous template, which eventually is being replaced by bone. This requires co-regulation of differentiation of the cell-types specific for cartilage and bone, chondrocytes and osteoblasts, respectively. In recent years it has been demonstrated that Wnt family members and their respective intracellular pathways, such as non-canonical and the canonical $Wnt/{\beta}$-catenin pathway, play important and diverse roles during different steps of vertebrate skeletal development. Based on the recent discoveries modulation of the canonical Wnt-signaling pathway could be an interesting approach to direct stem cells into certain skeletal lineages.


Beta-Catenin;Chondrocytes;Differentiation;Hypertrophy;LRP;Osteoblasts;Skeletal Lineage;Wnts


  1. Akiyama, H., Lyons, J. P., Mori-Akiyama, Y., Yang, X., Zhang, R., et al. (2004) Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Genes Dev. 18, 1072− 1087
  2. Baron, R. and Rawadi, G. (2007) Targeting the Wnt/beta-catenin pathway to regulate bone formation in the adult skeleton. Endocrinology 148, 2635−243
  3. Bodine, P. V., Zhao, W., Kharode, Y. P., Bex, F. J., Lambert, A. J., et al. (2004) The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. Mol. Endocrinol. 18, 1222−1237
  4. Gaur, T., Rich, L., Lengner, C. J., Hussain, S., Trevant, B., et al. (2006) Secreted frizzled related protein 1 regulates Wnt signaling for BMP2 induced chondrocyte differentiation. J. Cell. Physiol. 208, 87−96
  5. Glass, D. A., 2nd, and Karsenty, G. (2006) Molecular bases of the regulation of bone remodeling by the canonical Wnt signaling pathway. Curr. Top Dev. Biol. 73, 43−84
  6. Guo, X., Day, T. F., Jiang, X., Garrett-Beal, L., Topol, L., et al. (2004) Wnt/beta-catenin signaling is sufficient and necessary for synovial joint formation. Genes Dev. 18, 2404−2417
  7. Haegel, H., Larue, L., Ohsugi, M., Fedorov, L., Herrenknecht, K., et al. (1995) Lack of beta-catenin affects mouse development at gastrulation. Development 121, 3529−3537
  8. Hartmann, C. and Tabin, C. J. (2001) Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell 104, 341−351
  9. Hill, T. P., Spater, D., Taketo, M. M., Birchmeier, W., and Hartmann, C. (2005) Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev. Cell 8, 727−738
  10. Karsenty, G. and Wagner, E. F. (2002) Reaching a genetic and molecular understanding of skeletal development. Dev. Cell 2, 389−406
  11. Kronenberg, H. M. (2003) Developmental regulation of the growth plate. Nature 423, 332−336
  12. Lai, L. P. and Mitchell, J. (2005) Indian hedgehog: its roles and regulation in endochondral bone development. J. Cell. Biochem. 96, 1163−1173
  13. Li, X., Zhang, Y., Kang, H., Liu, W., Liu, P., et al. (2005b) Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J. Biol. Chem. 280, 19883−19887
  14. Ryu, J. H., Kim, S. J., Kim, S. H., Oh, C. D., Hwang, S. G., et al. (2002) Regulation of the chondrocyte phenotype by betacatenin. Development 129, 5541−5550
  15. Spater, D., Hill, T. P., Gruber, M., and Hartmann, C. (2006a) Role of canonical Wnt-signalling in joint formation. Eur. Cell. Mater. 12, 71−80
  16. Tamamura, Y., Otani, T., Kanatani, N., Koyama, E., Kitagaki, J., et al. (2005) Developmental regulation of Wnt/beta-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification. J. Biol. Chem. 280, 19185−19195
  17. van Bezooijen, R. L., ten Dijke, P., Papapoulos, S. E., and Lowik, C. W. (2005) SOST/sclerostin, an osteocyte-derived negative regulator of bone formation. Cytokine Growth Factor Rev. 16, 319−327
  18. van der Horst, G., van der Werf, S. M., Farih-Sips, H., van Bezooijen, R. L., Lowik, C. W., et al. (2005) Downregulation of Wnt signaling by increased expression of Dickkopf-1 and -2 is a prerequisite for late-stage osteoblast differentiation of KS483 cells. J. Bone Miner. Res. 20, 1867−77
  19. Yang, Y., Topol, L., Lee, H., and Wu, J. (2003) Wnt5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation. Development 130, 1003− 1015
  20. Bi, W., Huang, W., Whitworth, D. J., Deng, J. M., Zhang, Z., et al. (2001) Haploinsufficiency of Sox9 results in defective cartilage primordia and premature skeletal mineralization. Proc. Natl. Acad. Sci. USA 98, 6698−6703
  21. Yamaguchi, T. P., Bradley, A., McMahon, A. P., and Jones, S. (1999) A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 126, 1211− 1223
  22. Hu, H., Hilton, M. J., Tu, X., Yu, K., Ornitz, D. M., et al. (2005) Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 132, 49−60
  23. Jin, E. J., Park, J. H., Lee, S. Y., Chun, J. S., Bang, O. S., et al. (2006) Wnt-5a is involved in TGF-beta3-stimulated chondrogenic differentiation of chick wing bud mesenchymal cells. Int. J. Biochem. Cell Biol. 38, 183−195
  24. Glass, D. A., 2nd, Bialek, P., Ahn, J. D., Starbuck, M., Patel, M. S., et al. (2005) Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev. Cell 8, 751−764
  25. Hartmann, C. (2006) A Wnt canon orchestrating osteoblastogenesis. Trends Cell Biol. 16, 151-158
  26. Wagner, E. F. and Karsenty, G. (2001) Genetic control of skeletal development. Curr. Opin. Genet. Dev. 11, 527−532
  27. Kawakami, Y., Wada, N., Nishimatsu, S. I., Ishikawa, T., Noji, S., et al. (1999) Involvement of Wnt-5a in chondrogenic pattern formation in the chick limb bud. Dev. Growth Differ. 41, 29−40
  28. Archer, C. W., Dowthwaite, G. P., and Francis-West, P. (2003) Development of synovial joints. Birth Defects Res. C Embryo Today 69, 144−155
  29. Rudnicki, J. A. and Brown, A. M. (1997) Inhibition of chondrogenesis by Wnt gene expression in vivo and in vitro. Dev. Biol. 185, 104−118
  30. Tufan, A. C. and Tuan, R. S. (2001) Wnt regulation of limb mesenchymal chondrogenesis is accompanied by altered Ncadherin- related functions. FASEB J. 15, 1436−1438
  31. Clement-Lacroix, P., Ai, M., Morvan, F., Roman-Roman, S., Vayssiere, B., et al. (2005) Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc. Natl. Acad. Sci. USA 102, 17406− 17411
  32. Lee, N. K., Sowa, H., Hinoi, E., Ferron, M., Ahn, J. D., et al. (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130, 456−469
  33. Li, X., Liu, P., Liu, W., Maye, P., Zhang, J., et al. (2005a) Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat. Genet. 37, 945−952
  34. Hwang, S. G., Ryu, J. H., Kim, I. C., Jho, E. H., Jung, H. C., et al. (2004) Wnt-7a causes loss of differentiated phenotype and inhibits apoptosis of articular chondrocytes via different mechanisms. J. Biol. Chem. 279, 26597−26604
  35. MacDonald, B. T., Joiner, D. M., Oyserman, S. M., Sharma, P., Goldstein, S. A., et al. (2007) Bone mass is inversely proportional to Dkk1 levels in mice. Bone 41, 331−339
  36. Church, V., Nohno, T., Linker, C., Marcelle, C., and Francis- West, P. (2002) Wnt regulation of chondrocyte differentiation. J. Cell Sci. 115, 4809−4818
  37. Morvan, F., Boulukos, K., Clement-Lacroix, P., Roman Roman, S., Suc-Royer, I., et al. (2006) Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J. Bone Miner. Res. 21, 934−945
  38. Spater, D., Hill, T. P., O'Sullivan R, J., Gruber, M., Conner, D. A., et al. (2006b) Wnt9a signaling is required for joint integrity and regulation of Ihh during chondrogenesis. Development 133, 3039−3049
  39. Tufan, A. C., Daumer, K. M., DeLise, A. M., and Tuan, R. S. (2002) AP-1 transcription factor complex is a target of signals from both WnT-7a and N-cadherin-dependent cell-cell adhesion complex during the regulation of limb mesenchymal chondrogenesis. Exp. Cell Res. 273, 197−203
  40. Krishnan, V., Bryant, H. U., and Macdougald, O. A. (2006) Regulation of bone mass by Wnt signaling. J. Clin. Invest. 116, 1202−1209
  41. Moser, A. R., Shoemaker, A. R., Connelly, C. S., Clipson, L., Gould, K. A., et al. (1995) Homozygosity for the Min allele of Apc results in disruption of mouse development prior to gastrulation. Dev. Dyn. 203, 422−433
  42. Ryu, J. H. and Chun, J. S. (2006) Opposing roles of WNT-5A and WNT-11 in interleukin-1beta regulation of type II collagen expression in articular chondrocytes. J. Biol. Chem. 281, 22039−22047
  43. St-Jacques, B., Hammerschmidt, M., and McMahon, A. P. (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 13, 2072−2086
  44. Balemans, W. and Van Hul, W. (2007) The genetics of lowdensity lipoprotein receptor-related protein 5 in bone: a story of extremes. Endocrinology 148, 2622−2629
  45. Chang, J., Sonoyama, W., Wang, Z., Jin, Q., Zhang, C., et al. (2007) Non-canonical WNT-4 signaling enhances bone regeneration of mesenchymal stem cells in craniofacial defects through activation of p38 MAPK. J. Biol. Chem. 282, 30938- 30948
  46. Kronenberg, H. M. (2006) PTHrP and skeletal development. Ann. NY Acad. Sci. 1068, 1−13
  47. Rountree, R. B., Schoor, M., Chen, H., Marks, M. E., Harley, V., et al. (2004) BMP receptor signaling is required for postnatal maintenance of articular cartilage. PLoS Biol. 2, e355
  48. Kim, J. B., Leucht, P., Lam, K., Luppen, C., Ten Berge, D., et al. (2007) Bone regeneration is regulated by Wnt signaling. J. Bone Miner. Res. [Epub ahead of print]
  49. Baron, R., Rawadi, G., and Roman-Roman, S. (2006) Wnt signaling: a key regulator of bone mass. Curr. Top Dev. Biol. 76, 103−127
  50. Day, T. F., Guo, X., Garrett-Beal, L., and Yang, Y. (2005) Wnt/ beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev. Cell 8, 739−750
  51. Hartmann, C. and Tabin, C. J. (2000) Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development 127, 3141−3159
  52. Rawadi, G. and Roman-Roman, S. (2005) Wnt signalling pathway: a new target for the treatment of osteoporosis. Expert Opin. Ther. Targets 9, 1063−1077
  53. Rodda, S. J. and McMahon, A. P. (2006) Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133, 3231−3244
  54. Bodine, P. V. and Komm, B. S. (2006) Wnt signaling and osteoblastogenesis. Rev. Endocr. Metab. Disord. 7, 33−39
  55. de Crombrugghe, B., Lefebvre, V., Behringer, R. R., Bi, W., Murakami, S., et al. (2000) Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol. 19, 389−394
  56. Gaur, T., Lengner, C. J., Hovhannisyan, H., Bhat, R. A., Bodine, P. V., et al. (2005) Canonical WNT signaling promotes osteogenesis by directly stimulating RUNX2 gene expression. J. Biol. Chem. 280, 33132−33140
  57. Gong, Y., Slee, R. B., Fukai, N., Rawadi, G., Roman-Roman, S., et al. (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107, 513−523
  58. Enomoto-Iwamoto, M., Kitagaki, J., Koyama, E., Tamamura, Y., Wu, C., et al. (2002) The Wnt antagonist Frzb-1 regulates chondrocyte maturation and long bone development during limb skeletogenesis. Dev. Biol. 251, 142−156
  59. Hwang, S. G., Yu, S. S., Lee, S. W., and Chun, J. S. (2005a) Wnt-3a regulates chondrocyte differentiation via c-Jun/AP-1 pathway. FEBS Lett. 579, 4837−4842
  60. Mak, K. K., Chen, M. H., Day, T. F., Chuang, P. T., and Yang, Y. (2006) Wnt/beta-catenin signaling interacts differentially with Ihh signaling in controlling endochondral bone and synovial joint formation. Development 133, 3695−3707
  61. Logan, C. Y. and Nusse, R. (2004) The Wnt signaling pathway in development and disease. Annu. Rev. Cell. Dev. Biol. 20, 781−810
  62. Tu, X., Joeng, K. S., Nakayama, K. I., Nakayama, K., Rajagopal, J., et al. (2007) Noncanonical Wnt signaling through G protein- linked PKCdelta activation promotes bone formation. Dev. Cell 12, 113−127
  63. Huelsken, J., Vogel, R., Brinkmann, V., Erdmann, B., Birchmeier, C., et al. (2000) Requirement for beta-catenin in anteriorposterior axis formation in mice. J. Cell Biol. 148, 567−578
  64. Hwang, S. G., Yu, S. S., Ryu, J. H., Jeon, H. B., Yoo, Y. J., et al. (2005b) Regulation of beta-catenin signaling and maintenance of chondrocyte differentiation by ubiquitin-independent proteasomal degradation of alpha-catenin. J. Biol. Chem. 280, 12758−12765
  65. Johnson, M. L., Harnish, K., Nusse, R., and Van Hul, W. (2004) LRP5 and Wnt signaling: a union made for bone. J. Bone Miner. Res. 19, 1749−1757
  66. Westendorf, J. J., Kahler, R. A., and Schroeder, T. M. (2004) Wnt signaling in osteoblasts and bone diseases. Gene 341, 19−39
  67. Bi, W., Deng, J. M., Zhang, Z., Behringer, R. R., and de Crombrugghe, B. (1999) Sox9 is required for cartilage formation. Nat. Genet. 22, 85−89
  68. Daumer, K. M., Tufan, A. C., and Tuan, R. S. (2004) Long-term in vitro analysis of limb cartilage development: involvement of Wnt signaling. J. Cell. Biochem. 93, 526−541
  69. Chen, Y., Whetstone, H. C., Lin, A. C., Nadesan, P., Wei, Q., et al. (2007) Beta-catenin signaling plays a disparate role in different phases of fracture repair: implications for therapy to improve bone healing. PLoS Med. 4, e249
  70. Hens, J. R., Wilson, K. M., Dann, P., Chen, X., Horowitz, M. C., et al. (2005) TOPGAL mice show that the canonical Wnt signaling pathway is active during bone development and growth and is activated by mechanical loading in vitro. J. Bone Miner. Res. 20, 1103−1113