Electrochemical Decolorization of a Rhodamine B using Dimensionally Stable Anode

불용성 전극을 이용한 Rhodamine B의 전기화학적 탈색

  • 김동석 (대구가톨릭대학교 환경과학과) ;
  • 박영식 (대구대학교 보건과학부)
  • Received : 2007.03.08
  • Accepted : 2007.05.02
  • Published : 2007.05.30

Abstract

This study has carried out a performance of dimensionally stable anode for the purpose of decolorization of Rhodamine B (RhB) in water. Seven kinds of 1, 2 and 3 component electrodes were prepared by plating and thermal deposition, which were coated by the oxides of Pt, Ru, Ir, Sn-Sb, Ir-Sn-Sb, Ru-Sn-Sb and Ru-Sn-Ti on Ti metal surface, respectively. Performance for RhB decolorization of the seven electrodes lay in: Ru-Sn-Ti/Ti ${\fallingdotseq}$ Ru-Sn-Sb/Ti > Ir-Sn-Sb/Ti > Sn-Sb/Ti > Ru/Ti > Ir/Ti > Pt/Ti. The effects of electrode area and distance, electrolyte type and concentration, current density and pH were investigated on the decolorization of RhB using Ru-Sn-Ti/Ti electrode. Decolorization of RhB was not influenced by electrode area and distance largely, however wattage was influenced by them. NaCl was superior to the decolorization of RhB than $Na_2SO_4$. Optimum NaCl dosage and current density were 0.5 g/L and $0.183A/cm^2$, respectively. The pH effect of decolorization of RhB was not significant within the range of 3-7.

References

  1. 길대수, 이병현, 이제근, 전기분해에 의한 고농도 유기물질제거 특성, 대한환경공학회지, 22(2), pp. 251-264 (2000)
  2. 김광욱, 김영준, 김인태, 박근일, 이일희, 촉매성 산화물 전극에 의한 암모니아의 전기 화학적 분해 특성, 화학공학, 43(1), pp. 9-15 (2005)
  3. 김광욱, 이일희, 김정식, 신기하, 김광호, 3성분 혼합 Ru-Sn-Ti/Ti 산화물 전극 활성 및 전극 수명 특성 ( II ), 화학공학, 39(2), pp. 138-143 (2001a)
  4. 김광욱, 이일희, 김정식, 신기하, 정봉익, 고온 소결된 촉매산화물 전극의 재료 특성 및 유기물 분해능 연구, 공업화학, 13(3), pp. 285-290 (2002a)
  5. 김광욱, 이일희, 김정식, 신기하, 정봉익, 김광호, 이리듐 산화물 전극의 유기물 성능 분해 개선, 화학공학, 40(2), pp. 146-151 (2002b)
  6. 김광욱, 이일희, 김정식, 최정길, 신기하, 이상훈, 김광호, 3성분 혼합 Ru-Sn-Ti/Ti 산화물 전극 활성 및 전극 수명특성 (I ), 화학공학, 38(6), pp. 774-782 (2000)
  7. 김성국, 박상원, 홍대일, 전기분해에 의한 염색폐수 처리공정에 관한 연구, 한국환경과학회지,8(4), pp. 539-545 (1999)
  8. 김운수, 차시환, 김용욱, Polyvinyl Alcohol 함유 폐수의 전해처리에 관한 연구, 수질보전, 9(1), pp. 31-40 (1993)
  9. 김탁현, 박철환, 배우근, 신웅배, 김상용 ,$RuO_2$/Ti 전극에 의한 염색폐수의 전기화학적 산화처리, 한국섬유공학회지, 38(7), pp. 366-372 (2001b)
  10. 김홍석, 서인석, 최일환, 김연권, 김지연, 이진영, 용존공기를 이용한 소독능 향상 전기분해 소독공정개발, 한국물환경학회. 대한상하수도학회 공동추계학술발표회 논문집, pp. 625-628 (2004)
  11. 류완석, 석진국, 임경호, 주대성, 전기응집부상 원리를 이용한 도시하수 처리시스템에 관한 연구, 대한환경공학회 추계학술발표회 논문집,pp. 886-890 (2003)
  12. 박영식, 문정현, 혐기성 슬러지 공정과 호기성 고정생물막공정을 이용한 염색 폐수처리, 한국환경위생학회지, 28(3) , pp. 55-63 (2002)
  13. 유재정, 민경석, 박정민, 황동진 ,Ti/$lrO_2$ 전극에 의한 염색폐수 전기분해 처리공정, 한국물환경학회지, 19(1), pp. 1-8 (2003a)
  14. 유재정, 민경석, 박정민, 염색폐수중 난분해성물질 전기분해처리특성, 대한환경공학회지, 25(10), pp. 1277-1282, (2003b)
  15. 이병학, 박금숙, 철 전극 전기 분해 법에 의한 폐수 중의 인 제거 특성연구, 단국대학교 신소재기술연련구소 신소재연구논집, pp. 129-139 (2004)
  16. 이상호, 문혜진, 김유미, 펜톤 산화 방법에 따른 염색폐수처리 효율 향상에 관한 연구, 대한환경공학회지, 25(1), pp. 87-93 (2003)
  17. (주) 테크로스 홈페이지, http://www.techcross.net/business_02_1.html (accessed Jan. 2000)
  18. 허목, 김병현, 김광진, 전기분해법에서의 전극변화에 따른위생매립장 침출수의 처리 특성, 폐기물자원화,10(1), pp. 68-74 (2002)
  19. 현성 E&E 홈페이지 , http://www.hsene.com (accessed Jan. 2004)
  20. Bejankiwar, R., Lalman, J. A., Seth, R. and Biswas, N., Electrochemical Degradation of 1,2-Dichloroethane(DCA) in a Synthetic Groundwater Medium using Stainless-steel Electrodes, Wat. Res., 39, pp. 4715-4724 (2005) https://doi.org/10.1016/j.watres.2005.09.012
  21. Chen, G., Electrochemical Technologies in Wastewater Treatment, Separation and Purification Technology, 38, pp. 11-41 (2004) https://doi.org/10.1016/j.seppur.2003.10.006
  22. Chen, X., Chen, G. and Yue, P. L., Stable Ti/$IrO_x-Sb_2O_5-SnO_2$ Anode for $O_2$ Evolution with Low Ir Content, J. Phys. Chem. B., 105, pp. 4623-4628 (2001) https://doi.org/10.1021/jp010038d
  23. Chen, G., Chen, X. and Vue, P. L., Electrochemical Behavior of Novel Ti/$IrO_2-Sb_2O_5-SnO_2$ Anodes, J. Phys. Chem. B., 106, pp. 4364-4369 (2002) https://doi.org/10.1021/jp013547o
  24. Cho, J., Choi, H., Kim, I. S. and Amy, G., Chemical Aspects and by Products of Electrolyser, Wat. Sci. Technol., 1(4), p. 159 (2001)
  25. Cornninellis, C. and Nerini, A., Anodic Oxidation of Phenol in the Presence of NaCI for Wastewater Treatment, J. of Applied Electrochemistry, 25, pp. 23-28 (1995)
  26. Correa-Lozano, B., Commninellis, C. and Battisti, A. D., Electrochemical Properties of Ti/$SnO_2-Sb_2O_5$ Electrodes Prepared by the Spray Pyrolysis Technique, J. of Applied Electrochemistry, 26, pp. 683-688 (1996) https://doi.org/10.1007/BF00241508
  27. Feng, Y. J. and Li, X. Y., Electro-catalytic Oxidation of Phenol on Several Metal-oxide Electrodes in Aqueous Solution, Wat. Res., 37, pp. 2399-2407 (2003) https://doi.org/10.1016/S0043-1354(03)00026-5
  28. Gao, P., Chen, X., Shen, F. and Chen, G., Removal of Chromium(VI) from Wastewater by Combined Electrocoagulation-electroflotation without a Filter, Separation and Purification Technology, 43, pp. 117-123 (2005) https://doi.org/10.1016/j.seppur.2004.10.008
  29. Kotz, R., Stucki, S. and Career, B., Electrochemical Waste Water Treatment using High Overvoltage Anodes. Part I:Physical and Electrochemical Properties of $SnO_2$ Anodes, J. of Applied Electrochemistry, 21, pp. 14-20 (1991) https://doi.org/10.1007/BF01103823
  30. Lazarova, V., Janex, M. L., Savoye, P., Blatchley III E. R. and Pommepuy, M., Advanced Wastewater Disinfection Technologies: State of the Art and Perspectives, Wat. Sci. Technol., 40(4/5), pp. 203-213 (1999)
  31. Li, X. Y., Cui, Y. H., Feng, Y. J, Xie, Z. M. and Gu, J. D., Reaction Pathways and Mechanisms of the Electrochemical Degradation of Phenol on Different Electrodes, Wat. Res., 39, pp. 1972-1981 (2005) https://doi.org/10.1016/j.watres.2005.02.021
  32. Lin, S. H. and Peng, C. F., Treatment of Textile Wastewater by Electrochemical Method., Wat. Res., 28(2), pp. 277-282 (1994) https://doi.org/10.1016/0043-1354(94)90264-X
  33. Mameri, N., Yeddou, A. R., Lounici, H., belhocine, D., Grib., H. and Bariou, B., Defluoridation of Septentrional Sahara Water of North Africa by Electrocoagulation Process using Bipolar Aluminium Electrodes, Wat. Res., 32(5), pp. 1604-1612 (1998) https://doi.org/10.1016/S0043-1354(97)00357-6
  34. Ministry of Health Singapore, http://www.gov.sg/moh/mohiss/poison/rhodam.html (accessed Jan. 2002)
  35. Polaco, A. M., Palmas, S., Renoldi, F. and Mascia, M., On the Performance of Ti/$SnO_2$ and Ti/$PbO_2$ Anodes in Electrochemical Degradation of 2-chlorophenol for Wastewater Treatment, J. of Applied Electrochemistry, 29, pp. 147-151 (1999) https://doi.org/10.1023/A:1003411906212
  36. Vlyssides, A. G., Loizidou, M., Karlis, P. K., Zorpas, A. A. and Papaioannou, D., Electrochemical Oxidation of a Textile Dye Wastewater using a Pt/Ti Electrode, J. of Hazardous materials, B70, pp. 41-52 (1999)
  37. Zhao, J., Wu, T., Wu, K., Oikawa, K., Hidaka, H. and Serpone, N., Photoassisted Degradation of Dye Pollutants. 3. Degradation of the Cationic Dye Rhodamine B in Aqueous Aionic Surfactant $TiO_2$ Dispersions of Dye under Visible Light Irradiation: Evidence for the Need of Substrate Adsorption on $TiO_2$ Particles, Environ. Sci. Tech., 32, pp. 2394-2400 (1998) https://doi.org/10.1021/es9707926