Synthesis and Characterization of Soluble Polypyrrole with High Conductivity

높은 전기 전도성을 갖는 가용성 폴리피롤 합성 및 특성

  • Hong, Jang-Hoo (Department of Fine Chemistry, Seoul National University of Technology) ;
  • Jang, Kwan-Sik (Department of Fine Chemistry, Seoul National University of Technology)
  • 홍장후 (서울산업대학교 정밀화학과) ;
  • 장관식 (서울산업대학교 정밀화학과)
  • Received : 2007.02.21
  • Accepted : 2007.04.16
  • Published : 2007.06.10

Abstract

Highly conducting Polypyrroles soluble in organic solvents were synthesized using functional doping agents, such as mixed dopants [sodium di(2-ethylhexyl)sulfosuccinate (DEHSNa) Naphthalenesulfonic acid (NSA), DEHSNa Toluenesulfonic acid (TSA), DEHSNa Dodecylbenzensulfonic acid (DBSA)] and mixed oxidants [$(NH_4)_2S_2O_8{\cdot}FeCl_3$, $(NH_4)_2S_2O_8{\cdot}Fe_2(SO_4)_3$]. Ppy-DEHS powder using an oxidant, such as $(NH_4)_2S_2O_8$ (10 wt%/vol.) showed higher solubility than the mixed dopant (DEHSNa NSA, 3 wt%/vol.) and mixed oxidant [$(NH_4)_2S_2O_8{\cdot}Fe_2(SO_4)_3$, 4 wt%/vol.] in DMF solvent. But Ppy-DEHS free standing film using a mixed dopant, such as DEHSNa NSA (16 S/cm) and a mixed oxidant, such as $(NH_4)_2S_2O_8{\cdot}Fe_2(SO_4)_3$ (13 S/cm) cast from DMF solvent showed higher electrical conductivity than $(NH_4)_2S_2O_8$ (2 S/cm). For the Ppy-DEHS films using various condition cast from DMF solvent, three dimensional various range hopping model (3D VRH ; $\{{\sigma}_{dc}(T)={\sigma}_oexp[-(T_o/T)^{1/4}]\}$) provided fit to the results of temperature dependence of electrical conductivity measurement.

Keywords

Polypyrrole;dopant;oxidants;doping agent

Acknowledgement

Supported by : 서울산업대학교

References

  1. S. Rapi, V. Bochi, and G. P. Gardini, Synth. Met., 32, 351 (1989) https://doi.org/10.1016/0379-6779(89)90777-7
  2. A. Dall'olio, Y. Dascola, and V. Varaca, Compfes Rendus, C267, 433 (1968)
  3. A. F. Diaz, K. K. Kanazawa, and G. P. Gardini, J. Chem. Soc., 635 (1979)
  4. D. M. Collard and M. S. Stoakes, Chem. Mater., 6, 850 (1985) https://doi.org/10.1021/cm00042a025
  5. D. Y. Kim, J. Y. Lee, C. Y. Kim, E. T. Kang, and K. L. Tan, Synth. Met., 72, 243 (1995)
  6. J. Y. Lee, and D. Y. Kim, Synth. Met., 74, 103 (1995)
  7. K. T. Song, J. Y. Lee, H. D. Kim, D. Y. Kim, S. Y. Kim, and C. Y. Kim, Synth. Met., 110, 57 (2000) https://doi.org/10.1016/S0379-6779(99)00267-2
  8. J. K. Lee, J. Joo, K. S. Jang, E. J. Oh, and S. G. Song, Saemulli, 38, 6 (1998)
  9. J. S Baeck, K. S. Jang, E. J. Oh, and J. Joo, Phys. Rev. B. 59, 6177 (1999) https://doi.org/10.1103/PhysRevE.59.999
  10. K. S. Jang, S. S. Han, J. S. Suh, and E. J. Oh, Synth. Met., 119, 109 (2001) https://doi.org/10.1016/S0379-6779(00)01011-0
  11. S. Machida, S. Miyata, and T. Techagumpuch, Synth. Met., 31, 311 (1989) https://doi.org/10.1016/0379-6779(89)90798-4
  12. E. J. Oh, K. S. Jang, and A. G. Macdiarmid, Synth. Met., 125, 267 (2002) https://doi.org/10.1016/S0379-6779(01)00384-8
  13. E. J. Oh and K. S. Jang, Synth. Met., 119, 107 (2001) https://doi.org/10.1016/S0379-6779(00)01000-6
  14. A. Angeli and L. Alessandri, Gazz. Chim, Ital. 46, 283 (1916)
  15. Y. A. Bubitsky, B. A. Zhubanov, and G. G. Maresch, Synth. Met., 41, 373 (1991) https://doi.org/10.1016/0379-6779(91)91085-O
  16. M. A. Diaz, B. J. Schwartz, M. R. Anderson, and A. J. Heeger, Synth. Met., 84, 455 (1997)
  17. A. J. Nelson, S. Glenis, and A. J. Frank, J. Vac. Sci. Technol. 6, 954 (1987)
  18. J. Joo, J. K. Lee, E. J. Oh, and A. J. Epstein, Synth. Met., 117, 45 (2001) https://doi.org/10.1016/S0379-6779(00)00537-3