A Study on the Treatment of Swine Wastewater Using Titanium Dioxide Prepared by Hydrothermal Method

수열합성법으로 제조된 이산화티탄에 의한 축산폐수 처리에 관한 연구

  • Yang, Jin-Seop (Division of Applied Chemical Engineering, Pukyong National University) ;
  • jung, Won Young (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Baek, Seung Hee (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Lee, Gun Dae (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Park, Seong Soo (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Hong, Seong-Soo (Division of Applied Chemical Engineering, Pukyong National University)
  • 양진섭 (부경대학교 응용화학공학부) ;
  • 정원영 (부경대학교 응용화학공학부) ;
  • 백승희 (부경대학교 응용화학공학부) ;
  • 이근대 (부경대학교 응용화학공학부) ;
  • 박성수 (부경대학교 응용화학공학부) ;
  • 홍성수 (부경대학교 응용화학공학부)
  • Received : 2007.01.22
  • Accepted : 2007.02.28
  • Published : 2007.04.10

Abstract

This study was performed to evaluate the application of $TiO_2$ on the photocatalytic treatment of swine wastewater. $TiO_2$ sol was prepared by hydrothermal method with the agent ratio($(C_2H_5)_2NH_2\;mol/Ti(OC_3H_7)_4\;mol)=1$ and R ratio ($H_2O\;mol/Ti(OC_3H_7)_4\;mol)=42$. The effect of parameter on the removal efficiency of swine wastewater in a batch type immobilized photocatalyst system such as initial pH, intensity of UV, dosage of $TiO_2$, air flow rate, and concentration of $H_2O_2$ was examined. Wastewater was effectively eliminated in the presence of both UV light illumination and $TiO_2$. Photocatalytic activity was higher in acidic condition compared to neutral and alkaline conditions. In addition, photocatalytic activity increased with increasing UV light intensity, dosage of $TiO_2$, the flow rate of air and the amount of $H_2O_2$ added as an oxidant, but the excess amount of $H_2O_2$ dosage decreased the removal efficiency.

Acknowledgement

Supported by : 산업자원부

References

  1. X. Z. Li and M. Zhang, Water. Sci. Tech., 34, 49 (1996)
  2. N. H. Ince, M. I. Stefan, and J. R. Bolton, J. Adv. Oxid. Technol., 2, 442 (1997)
  3. C. N. Kurucz, H. An, J. Greene, and T. D. Waite, J. Adv. Oxid. Technol., 3, 442 (1998)
  4. F. Zhang, J. Zhao, T. Shen, H. Hidaka, E. Pelizzetti, and N. Serpone, Applied Catalysis B; Environmeental, 15, 147 (1998)
  5. L. Tinucci, E. Borgarello, C. Minero, and E. Pelizzetti, Photocatalytic Purification and Treatment of Water and Air, 585 (1993)
  6. D. Bahenemann, D. Bockelmann, and R. Goslich, Solar Energy Materials, 24, 564 (1991) https://doi.org/10.1016/0165-1633(91)90091-X
  7. J. M. Herrmann, C. Guillard, and P. Pichat, Catalysis Today, 17, 7 (1993)
  8. D. F. Ollis, E. Pelizzetti, and N. Serpone, Environ. Sci. Technol., 25, 1523 (1991)
  9. C.-H. Hung and B. J. MariNas, Environ. Sci. Technol., 31, 562 (1997)
  10. Q. Chen, Y. Qian, Z. Chen, G. Zhou, and Y. Zhang, Mater. Letters, 22 77 (1995)
  11. M. R. Prairle, L. R. Evans, D. M. Stange, and S. L. Martinez, Environ. Sci. Technol., 27, 1776 (1993) https://doi.org/10.1021/es00043a606
  12. G. Wu, A. Koliadima, Y. S. Her, and E. Matijevic, J. Coll. Inter. Sci., 195, 222 (1997)
  13. M. Dai, J. Coll. and Inter. Sci., 198, 6 (1998)
  14. M. R. Hoffman, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev., 95, 69 (1995)
  15. D. F. Ollis, Contaminant Degradation in Water, Environ. Sci. Tech., 19, 480 (1985)
  16. A. L. Pruden and D. F. Ollis, J. Catal., 82, 404 (1983) https://doi.org/10.1016/0021-9517(83)90207-5
  17. T. Matsunaga and M. Okochi, Environ. Sci. Tech., 29, 501 (1995)
  18. P. Ameta, R. Ameta, R. C. Ameta, and S. C. Ameta, J. Photo. Photobiol. A: Chem., 103, 133 (1997)
  19. M. Huang, E. Tso, and A. K. Datye, Environ. Sci. Tech., 30, 3084 (1996)
  20. H. D Jun, J. KSEE, 16, 809 (1994)
  21. S. Kumar and A. P. Davis, Water. Environ. Res., 69, 1238 (1997)