Synthesis and Characterization of Polyurethane bead/silica Hybrid Composites

폴리우레탄 비드/실리카 복합체의 합성 및 그 특성

  • Yang, Seung Nam (Department of Chemical Engineering, College of Engineering Sungkyunkwan University) ;
  • Yim, Gie Hong (Department of Chemical Engineering, College of Engineering Sungkyunkwan University) ;
  • Kim, Nam Ki (Department of Chemical Engineering, College of Engineering Sungkyunkwan University)
  • 양승남 (성균관대학교 공과대학 화학공학과) ;
  • 임기홍 (성균관대학교 공과대학 화학공학과) ;
  • 김남기 (성균관대학교 공과대학 화학공학과)
  • Received : 2007.05.07
  • Accepted : 2007.07.23
  • Published : 2007.08.10

Abstract

In this study, polyurethane prepolymers were synthesized from polycaprolactonediol (PCDs. M.W. 530, 830, 1000, 1250, and 2000) and polycaprolactonetriol (PCTs. M.W. 300 and 900), and hexamethylenediisocyanate (HMDI). Polyurethane beads was prepared from the different prepolymers by a two-step suspension polymerization. The particle size of polyurethane beads was investigated by particle size analyzer. The beads were $10{\sim}30{\mu}m$ in size. The structure of beads was confirmed by FT-IR spectrometer. Their thermal properties were analyzed by TGA. Glass transition temperatures ($T_g$) of the beads were in the range of $-23{\sim}-53^{\circ}C$ and decreased with the increase of the PCD molecular weight. In order to prevention the cohesion of beads, the beads were coated with tetraethoxysilane (TEOS).

Keywords

polyurethane bead;TEOS;polyurethane bead/silica hybrid

References

  1. Y. Y. Yu and W. C. Chen, Mater. Chem. Phys, 82, 388 (2003) https://doi.org/10.1016/S0254-0584(03)00259-1
  2. JP. Patent No. 平4-185648 (1992)
  3. U. S. Patent 6, 586, 523 (2003)
  4. J. P. Patent 特開平 8-290106 (1996)
  5. S. M. Kim, N. S. Kwak, Y. K. Yang, B. Y. Park, and T. S. Hwang, Polymer(kor). 29, 253 (2005)
  6. X. Shang, Z. K. Zhu, J. Yin, and X. D. Ma, Chem. Mater, 14, 71 (2002) https://doi.org/10.1021/cm010088v
  7. G. H. Hsiue, W. J. Kuo, Y. P. Huang, and R. J. Jeng, Polymer, 41, 2813 (2000) https://doi.org/10.1016/S0032-3861(99)00478-4
  8. J. B. Lee and K. H. Lee, Elastomer, 40, 37 (2005)
  9. Y. C. Chen, S. Zhou, H. Yang, G. Gu, and L. Wu, J. Col. Inter. Sci, 279, 370 (2004) https://doi.org/10.1016/j.jcis.2004.06.074
  10. J. W. Cho and S. H. Lee, Eur. Polym. J, 40, 1343 (2004) https://doi.org/10.1016/j.eurpolymj.2004.01.041
  11. Y. Y. Yu, C. Y. Chen, and W. C. Chen, Polymer, 44, 593 (2003) https://doi.org/10.1016/S0032-3861(02)00824-8
  12. Z. H. Huang. and K. Y. Qiu, Polymer, 38, 521 (1997)
  13. S. X. Zhou, L. M. Wu, J. Sun, and W. D. Shen, Prog. Org. Coat, 45, 33 (2002) https://doi.org/10.1016/S0300-9440(02)00085-1
  14. D. J. David and H. B. Staley, Analytical Chemistry of Polyurethane, Wiley-interscience, New York (1969)
  15. C. H. Cho, H. D. Seo, B. H. Min, H. K. Cho, and S. T. Noh, J. Kor. Ind. Eng. Chem, 13, 825 (2002)
  16. T. Ogoshi, H. Itoh, K. M. Kim, and Y. Chujo, Macromolecules, 35, 334 (2002) https://doi.org/10.1021/ma010819c
  17. Y. Chen and J. O. Iroh, Chem. Mater, 11, 1218 (1999)
  18. M. Xiong, B. You, S. Zhou, and L. Wu, Polymer, 45, 2967 (2004) https://doi.org/10.1016/j.polymer.2004.02.043
  19. S. G. Kim, M. J. Li, M. T. Ramesan, and D. S. Lee, Polymer (korea), 29, 140 (2005)
  20. B. Otto, Mod. Plast, 24, 149 (1947)
  21. L. Matejka, K. Dusek, J. Plestil, J. Kriz, and F. Lednicky, Polymer, 40, 171 (1998)