Nanomedicine: An Emerging Modality Based on Nanotechnology for Therapy and Diagnosis

진단 및 치료용 나노의약품

  • Gurusamy, Saravanakumar (Department of Advanced Polymer and Fiber Materials, Kyung Hee University) ;
  • Park, Jae Hyung (Department of Advanced Polymer and Fiber Materials, Kyung Hee University) ;
  • Kim, Kwangmeyung (Biomedical Research Center, Korean Institute of Science and Technology,) ;
  • Kwon, Ick Chan (Biomedical Research Center, Korean Institute of Science and Technology,)
  • ;
  • 박재형 (경희대학교 환경응용화학대학 고분자섬유신소재전공) ;
  • 김광명 (한국과학기술연구원 의과학연구센터) ;
  • 권익찬 (한국과학기술연구원 의과학연구센터)
  • Received : 2007.05.21
  • Published : 2007.06.10


Nanomedicine is a young and rapidly emerging field, which integrates clinical medicine with nanotechnology. Although the commercial nanomedicine is still in a fairly embryonic state, the recent advances in the nanotechnology-based therapeutics and diagnosis has changed the landscape of medicine. Bibliometric analysis shows a surge in research activity over the past decade. In this review, we have discussed some of the promising materials and their applications to this nascent field, such as carbon nanomaterials, polymeric drug delivery systems, and diagnostic imaging agents.


  1. O. C. Farokhad, R. Langer, Adv Drug Deliv. Rev., 58, 1456 (2006)
  2. V. Wagner, A. Dullaart, A. K. Bock, and A Zweck, Nat. Biotechnol., 24, 1211 (2006)
  3. M. Eaton, Nat. Mater., 6, 251 (2007)
  4. A Trillion Dollar Market? When?
  6. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. F. Smalley, Nature, 318, 162 (1985)
  7. A. Hirsch, The Chemistry of the Fullerenes, Thieme, Stuttgart (1994)
  8. M. Brettreich, A. Hirsch, Tetrahedron Lett., 39, 2731 (1998)
  9. J. L. Atwood, G. A. Koutsantonis, and C. L. Raston, Nature, 368, 229 (1994)
  10. W. A. Scrivens, J. M. Tour, K. E. Creek, and L. Pirisi, J. Am. Chem. Soc., 116, 4517 (1994)
  11. S. Yamago, H. Tokuyama, E. Nakamura, K. Kikuchi, S. Kananishi, K. Sueki, H. Nakahara, S. Enomoto, and F. Ambe, Chem. Biol., 2, 385 (1995)
  12. R. Sijbesma, G. Srdanov, F. Wudl, J. A. Gastoro, C. Wilkins, and S. H. Friedman, J. Am. Chem. Soc., 115, 6510 (1993)
  13. L. L. Dugan, D. M. Turetsky, C. Du, D. Lobner, M. Wheeler, C. R. Almli, C. K.-F. Shen, T.-Y. Luh, D. W. Choi, and T.-S. Lin, Proc. Natl. Acad. Sci. USA, 94, 9434 (1997)
  14. M. Satoh and I. Takayanagi, J. Pharmacol Sci., 100, 513 (2006)
  15. S. Bosi, T. D. Ros, G. Spalluto, and M. Prato, Eur. J. Med. Chem., 38, 913 (2003)
  16. P. M. Ajayan, Chem. Rev., 99, 1787 (1999)
  17. C. R. Martin, P. Kohli, Nat. Rev. Drug Discov., 2, 29 (2003)
  18. H. Murakami and N. Nakashima, J. Nanosci. Nanotechnol., 6, 16, (2006)
  19. N. W. S. Kam and H. Dai, Phys. Stat. Sol. (a), 243, 3561 (2006)
  20. D. Pantarotto, J. P. Briand, M. Prato, and A. Bianco, Chem. Commun., 1, 16 (2004)
  21. Z. Yinghuai, A. T. Peng, K. Carpenter, J. A. Maguire, N. S. Hosmane, and M. Takagaki, J. Am. Chem. Soc., 127, 9875 (2005)
  22. D. Pantarotto, C. D. Partidos, R. Graff, J. Hoebeke, J.-P. Briand, M. Prato, and A. Bianco, J. Am. Chem. Soc., 125, 6160 (2003)
  23. N. W. S. Kam, M. O'Connell, J. A. Wisdom, and H. Dai, Proc. Natl. Acad. Sci. U.S.A, 102, 11600 (2005)
  24. Z. Liu, W. Cai, L. He, N. Nakayama, K. Chen, X. Sun, X. Chen, and H. Dai, Nature Nanotech., 2, 47 (2007)
  25. R. Duncan, Nat. Rev. Drug Discovery, 2, 347 (2003)
  26. G. S. Kwon, S. Suwa, M. Yokoyama, T. Okano, Y. Sakurai, and K. Kataoka, J Control Release, 29, 17 (1994)
  27. M. Yokoyama, S. Inoue, K. Kataoka, N. Yui, T. Okano, and Y. Sakurai, Makromol Chem., 190, 2041 (1989)
  28. Y. Kakizawa, S. Furukawa, and K. Kataoka, J. Control Release, 97, 345 (2004)
  29. G. R. Newkome, Z. Yao, G. R. Baker, and V. K. Gupta, J. Org. Chem., 50, 2003 (1985)
  30. M. S. Wendland and S. C. Zimmerman, J. Am. Chem. Soc., 121, 1389 (1999)
  31. P. Felgner, Y. Barenholz, J. P. Behr, S. H. Cheng, P. Cullis, L. Huang, F. J. Jessee, L. Seymour, F. Szoka, A. R. Thierry, E. Wagner, and G. Wu, Hum. Gene Ther. 8, 511 (1997)
  32. S. Kim, Y. T. Lim, E. G. Soltesz, A. M. D. Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, Nat. Biotechnol, 22, 93 (203)
  33. W. W. Yu, E. Chang, and R. Drezek, V. Colvin, Biochem. Biophys. Res. Commun., 348, 781 (2006)
  34. C. Kirchner, T. Liedl, S. Kudera, T. Pellegrino, A. M. Javier, H. E. Gaub, S. Stolzle, N. Fertig, and Wolfgang J. Parak, Nano Lett., 5, 331 (2005)
  35. S. Benderbous, C. Corot, P. Jacobs, and B. Bonnemain, Acad. Radiol. 3 (suppl. 2), S292 (1996)
  36. D. L. J. Thorek, A. Chen, J. Czupryna, and A Tsourkas, Ann. Biomed. Eng., 34, 23 (2006)
  37. H. Gu, K. Xu, Z. Yang, C. K. Chang, and B. Xu, Chem. Commun., 34, 4270 (2005)
  38. L. R. Hirsch, A. M. Gobin, A. R. Lowery, F. Tam, R. A. Drezek, N. J. Halas, and J. L. West, Annals of Biomedical Engineering, 34, 15 (2006)
  39. H. S. Zhou, I. Honma, and H. Komiyama, Phys. Rev. B, 50, 12052 (1994)
  40. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, Chem. Phys. Lett. 28, 243 (1998)
  41. W. Shi, Y. Sahoo, M. T. Swihart, and P. N. Prasad, Langmuir, 21, 1610 (2005)