Nanomedicine: An Emerging Modality Based on Nanotechnology for Therapy and Diagnosis

진단 및 치료용 나노의약품

  • Gurusamy, Saravanakumar (Department of Advanced Polymer and Fiber Materials, Kyung Hee University) ;
  • Park, Jae Hyung (Department of Advanced Polymer and Fiber Materials, Kyung Hee University) ;
  • Kim, Kwangmeyung (Biomedical Research Center, Korean Institute of Science and Technology,) ;
  • Kwon, Ick Chan (Biomedical Research Center, Korean Institute of Science and Technology,)
  • ;
  • 박재형 (경희대학교 환경응용화학대학 고분자섬유신소재전공) ;
  • 김광명 (한국과학기술연구원 의과학연구센터) ;
  • 권익찬 (한국과학기술연구원 의과학연구센터)
  • Received : 2007.05.21
  • Published : 2007.06.10

Abstract

Nanomedicine is a young and rapidly emerging field, which integrates clinical medicine with nanotechnology. Although the commercial nanomedicine is still in a fairly embryonic state, the recent advances in the nanotechnology-based therapeutics and diagnosis has changed the landscape of medicine. Bibliometric analysis shows a surge in research activity over the past decade. In this review, we have discussed some of the promising materials and their applications to this nascent field, such as carbon nanomaterials, polymeric drug delivery systems, and diagnostic imaging agents.

References

  1. O. C. Farokhad, R. Langer, Adv Drug Deliv. Rev., 58, 1456 (2006) https://doi.org/10.1016/j.addr.2006.09.011
  2. V. Wagner, A. Dullaart, A. K. Bock, and A Zweck, Nat. Biotechnol., 24, 1211 (2006) https://doi.org/10.1038/nbt1006-1211
  3. M. Eaton, Nat. Mater., 6, 251 (2007) https://doi.org/10.1038/nmat1879
  4. A Trillion Dollar Market? When? http://www.cientifica.com
  5. http://www.esf.org
  6. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. F. Smalley, Nature, 318, 162 (1985) https://doi.org/10.1038/318162a0
  7. A. Hirsch, The Chemistry of the Fullerenes, Thieme, Stuttgart (1994)
  8. M. Brettreich, A. Hirsch, Tetrahedron Lett., 39, 2731 (1998)
  9. J. L. Atwood, G. A. Koutsantonis, and C. L. Raston, Nature, 368, 229 (1994)
  10. W. A. Scrivens, J. M. Tour, K. E. Creek, and L. Pirisi, J. Am. Chem. Soc., 116, 4517 (1994)
  11. S. Yamago, H. Tokuyama, E. Nakamura, K. Kikuchi, S. Kananishi, K. Sueki, H. Nakahara, S. Enomoto, and F. Ambe, Chem. Biol., 2, 385 (1995)
  12. R. Sijbesma, G. Srdanov, F. Wudl, J. A. Gastoro, C. Wilkins, and S. H. Friedman, J. Am. Chem. Soc., 115, 6510 (1993)
  13. L. L. Dugan, D. M. Turetsky, C. Du, D. Lobner, M. Wheeler, C. R. Almli, C. K.-F. Shen, T.-Y. Luh, D. W. Choi, and T.-S. Lin, Proc. Natl. Acad. Sci. USA, 94, 9434 (1997)
  14. M. Satoh and I. Takayanagi, J. Pharmacol Sci., 100, 513 (2006) https://doi.org/10.1254/jphs.CPJ06002X
  15. S. Bosi, T. D. Ros, G. Spalluto, and M. Prato, Eur. J. Med. Chem., 38, 913 (2003) https://doi.org/10.1016/j.ejmech.2003.09.005
  16. P. M. Ajayan, Chem. Rev., 99, 1787 (1999)
  17. C. R. Martin, P. Kohli, Nat. Rev. Drug Discov., 2, 29 (2003) https://doi.org/10.1038/nrd988
  18. H. Murakami and N. Nakashima, J. Nanosci. Nanotechnol., 6, 16, (2006)
  19. N. W. S. Kam and H. Dai, Phys. Stat. Sol. (a), 243, 3561 (2006) https://doi.org/10.1002/pssb.200669226
  20. D. Pantarotto, J. P. Briand, M. Prato, and A. Bianco, Chem. Commun., 1, 16 (2004)
  21. Z. Yinghuai, A. T. Peng, K. Carpenter, J. A. Maguire, N. S. Hosmane, and M. Takagaki, J. Am. Chem. Soc., 127, 9875 (2005) https://doi.org/10.1021/ja0517116
  22. D. Pantarotto, C. D. Partidos, R. Graff, J. Hoebeke, J.-P. Briand, M. Prato, and A. Bianco, J. Am. Chem. Soc., 125, 6160 (2003)
  23. N. W. S. Kam, M. O'Connell, J. A. Wisdom, and H. Dai, Proc. Natl. Acad. Sci. U.S.A, 102, 11600 (2005)
  24. Z. Liu, W. Cai, L. He, N. Nakayama, K. Chen, X. Sun, X. Chen, and H. Dai, Nature Nanotech., 2, 47 (2007) https://doi.org/10.1038/nnano.2006.170
  25. R. Duncan, Nat. Rev. Drug Discovery, 2, 347 (2003) https://doi.org/10.1038/nrd1088
  26. G. S. Kwon, S. Suwa, M. Yokoyama, T. Okano, Y. Sakurai, and K. Kataoka, J Control Release, 29, 17 (1994)
  27. M. Yokoyama, S. Inoue, K. Kataoka, N. Yui, T. Okano, and Y. Sakurai, Makromol Chem., 190, 2041 (1989) https://doi.org/10.1002/macp.1989.021900904
  28. Y. Kakizawa, S. Furukawa, and K. Kataoka, J. Control Release, 97, 345 (2004) https://doi.org/10.1016/j.jconrel.2004.03.031
  29. G. R. Newkome, Z. Yao, G. R. Baker, and V. K. Gupta, J. Org. Chem., 50, 2003 (1985) https://doi.org/10.1021/jo00211a052
  30. M. S. Wendland and S. C. Zimmerman, J. Am. Chem. Soc., 121, 1389 (1999)
  31. P. Felgner, Y. Barenholz, J. P. Behr, S. H. Cheng, P. Cullis, L. Huang, F. J. Jessee, L. Seymour, F. Szoka, A. R. Thierry, E. Wagner, and G. Wu, Hum. Gene Ther. 8, 511 (1997)
  32. S. Kim, Y. T. Lim, E. G. Soltesz, A. M. D. Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, Nat. Biotechnol, 22, 93 (203)
  33. W. W. Yu, E. Chang, and R. Drezek, V. Colvin, Biochem. Biophys. Res. Commun., 348, 781 (2006) https://doi.org/10.1016/j.bbrc.2006.07.160
  34. C. Kirchner, T. Liedl, S. Kudera, T. Pellegrino, A. M. Javier, H. E. Gaub, S. Stolzle, N. Fertig, and Wolfgang J. Parak, Nano Lett., 5, 331 (2005) https://doi.org/10.1021/nl047996m
  35. S. Benderbous, C. Corot, P. Jacobs, and B. Bonnemain, Acad. Radiol. 3 (suppl. 2), S292 (1996)
  36. D. L. J. Thorek, A. Chen, J. Czupryna, and A Tsourkas, Ann. Biomed. Eng., 34, 23 (2006) https://doi.org/10.1007/s10439-005-9002-7
  37. H. Gu, K. Xu, Z. Yang, C. K. Chang, and B. Xu, Chem. Commun., 34, 4270 (2005)
  38. L. R. Hirsch, A. M. Gobin, A. R. Lowery, F. Tam, R. A. Drezek, N. J. Halas, and J. L. West, Annals of Biomedical Engineering, 34, 15 (2006) https://doi.org/10.1007/s10439-005-9001-8
  39. H. S. Zhou, I. Honma, and H. Komiyama, Phys. Rev. B, 50, 12052 (1994)
  40. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, Chem. Phys. Lett. 28, 243 (1998)
  41. W. Shi, Y. Sahoo, M. T. Swihart, and P. N. Prasad, Langmuir, 21, 1610 (2005) https://doi.org/10.1021/la047628y