Nanomedicine: An Emerging Modality Based on Nanotechnology for Therapy and Diagnosis

진단 및 치료용 나노의약품

  • Gurusamy, Saravanakumar (Department of Advanced Polymer and Fiber Materials, Kyung Hee University) ;
  • Park, Jae Hyung (Department of Advanced Polymer and Fiber Materials, Kyung Hee University) ;
  • Kim, Kwangmeyung (Biomedical Research Center, Korean Institute of Science and Technology,) ;
  • Kwon, Ick Chan (Biomedical Research Center, Korean Institute of Science and Technology,)
  • ;
  • 박재형 (경희대학교 환경응용화학대학 고분자섬유신소재전공) ;
  • 김광명 (한국과학기술연구원 의과학연구센터) ;
  • 권익찬 (한국과학기술연구원 의과학연구센터)
  • Received : 2007.05.21
  • Published : 2007.06.10

Abstract

Nanomedicine is a young and rapidly emerging field, which integrates clinical medicine with nanotechnology. Although the commercial nanomedicine is still in a fairly embryonic state, the recent advances in the nanotechnology-based therapeutics and diagnosis has changed the landscape of medicine. Bibliometric analysis shows a surge in research activity over the past decade. In this review, we have discussed some of the promising materials and their applications to this nascent field, such as carbon nanomaterials, polymeric drug delivery systems, and diagnostic imaging agents.

Keywords

nanomedicine;nanotechnology;polymeric therapeutics;carbon nanomaterials

References

  1. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. F. Smalley, Nature, 318, 162 (1985) https://doi.org/10.1038/318162a0
  2. J. L. Atwood, G. A. Koutsantonis, and C. L. Raston, Nature, 368, 229 (1994)
  3. L. L. Dugan, D. M. Turetsky, C. Du, D. Lobner, M. Wheeler, C. R. Almli, C. K.-F. Shen, T.-Y. Luh, D. W. Choi, and T.-S. Lin, Proc. Natl. Acad. Sci. USA, 94, 9434 (1997)
  4. S. Bosi, T. D. Ros, G. Spalluto, and M. Prato, Eur. J. Med. Chem., 38, 913 (2003) https://doi.org/10.1016/j.ejmech.2003.09.005
  5. C. R. Martin, P. Kohli, Nat. Rev. Drug Discov., 2, 29 (2003) https://doi.org/10.1038/nrd988
  6. N. W. S. Kam and H. Dai, Phys. Stat. Sol. (a), 243, 3561 (2006) https://doi.org/10.1002/pssb.200669226
  7. D. Pantarotto, J. P. Briand, M. Prato, and A. Bianco, Chem. Commun., 1, 16 (2004)
  8. Z. Yinghuai, A. T. Peng, K. Carpenter, J. A. Maguire, N. S. Hosmane, and M. Takagaki, J. Am. Chem. Soc., 127, 9875 (2005) https://doi.org/10.1021/ja0517116
  9. Z. Liu, W. Cai, L. He, N. Nakayama, K. Chen, X. Sun, X. Chen, and H. Dai, Nature Nanotech., 2, 47 (2007) https://doi.org/10.1038/nnano.2006.170
  10. Y. Kakizawa, S. Furukawa, and K. Kataoka, J. Control Release, 97, 345 (2004) https://doi.org/10.1016/j.jconrel.2004.03.031
  11. G. R. Newkome, Z. Yao, G. R. Baker, and V. K. Gupta, J. Org. Chem., 50, 2003 (1985) https://doi.org/10.1021/jo00211a052
  12. L. R. Hirsch, A. M. Gobin, A. R. Lowery, F. Tam, R. A. Drezek, N. J. Halas, and J. L. West, Annals of Biomedical Engineering, 34, 15 (2006) https://doi.org/10.1007/s10439-005-9001-8
  13. H. S. Zhou, I. Honma, and H. Komiyama, Phys. Rev. B, 50, 12052 (1994)
  14. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, Chem. Phys. Lett. 28, 243 (1998)
  15. S. Yamago, H. Tokuyama, E. Nakamura, K. Kikuchi, S. Kananishi, K. Sueki, H. Nakahara, S. Enomoto, and F. Ambe, Chem. Biol., 2, 385 (1995)
  16. N. W. S. Kam, M. O'Connell, J. A. Wisdom, and H. Dai, Proc. Natl. Acad. Sci. U.S.A, 102, 11600 (2005)
  17. G. S. Kwon, S. Suwa, M. Yokoyama, T. Okano, Y. Sakurai, and K. Kataoka, J Control Release, 29, 17 (1994)
  18. A. Hirsch, The Chemistry of the Fullerenes, Thieme, Stuttgart (1994)
  19. O. C. Farokhad, R. Langer, Adv Drug Deliv. Rev., 58, 1456 (2006) https://doi.org/10.1016/j.addr.2006.09.011
  20. V. Wagner, A. Dullaart, A. K. Bock, and A Zweck, Nat. Biotechnol., 24, 1211 (2006) https://doi.org/10.1038/nbt1006-1211
  21. M. Eaton, Nat. Mater., 6, 251 (2007) https://doi.org/10.1038/nmat1879
  22. C. Kirchner, T. Liedl, S. Kudera, T. Pellegrino, A. M. Javier, H. E. Gaub, S. Stolzle, N. Fertig, and Wolfgang J. Parak, Nano Lett., 5, 331 (2005) https://doi.org/10.1021/nl047996m
  23. M. S. Wendland and S. C. Zimmerman, J. Am. Chem. Soc., 121, 1389 (1999)
  24. R. Duncan, Nat. Rev. Drug Discovery, 2, 347 (2003) https://doi.org/10.1038/nrd1088
  25. M. Yokoyama, S. Inoue, K. Kataoka, N. Yui, T. Okano, and Y. Sakurai, Makromol Chem., 190, 2041 (1989) https://doi.org/10.1002/macp.1989.021900904
  26. W. W. Yu, E. Chang, and R. Drezek, V. Colvin, Biochem. Biophys. Res. Commun., 348, 781 (2006) https://doi.org/10.1016/j.bbrc.2006.07.160
  27. H. Murakami and N. Nakashima, J. Nanosci. Nanotechnol., 6, 16, (2006)
  28. W. Shi, Y. Sahoo, M. T. Swihart, and P. N. Prasad, Langmuir, 21, 1610 (2005) https://doi.org/10.1021/la047628y
  29. A Trillion Dollar Market? When? http://www.cientifica.com
  30. M. Satoh and I. Takayanagi, J. Pharmacol Sci., 100, 513 (2006) https://doi.org/10.1254/jphs.CPJ06002X
  31. P. Felgner, Y. Barenholz, J. P. Behr, S. H. Cheng, P. Cullis, L. Huang, F. J. Jessee, L. Seymour, F. Szoka, A. R. Thierry, E. Wagner, and G. Wu, Hum. Gene Ther. 8, 511 (1997)
  32. S. Kim, Y. T. Lim, E. G. Soltesz, A. M. D. Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, Nat. Biotechnol, 22, 93 (203)
  33. D. L. J. Thorek, A. Chen, J. Czupryna, and A Tsourkas, Ann. Biomed. Eng., 34, 23 (2006) https://doi.org/10.1007/s10439-005-9002-7
  34. S. Benderbous, C. Corot, P. Jacobs, and B. Bonnemain, Acad. Radiol. 3 (suppl. 2), S292 (1996)
  35. H. Gu, K. Xu, Z. Yang, C. K. Chang, and B. Xu, Chem. Commun., 34, 4270 (2005)
  36. D. Pantarotto, C. D. Partidos, R. Graff, J. Hoebeke, J.-P. Briand, M. Prato, and A. Bianco, J. Am. Chem. Soc., 125, 6160 (2003)
  37. http://www.esf.org
  38. M. Brettreich, A. Hirsch, Tetrahedron Lett., 39, 2731 (1998)
  39. R. Sijbesma, G. Srdanov, F. Wudl, J. A. Gastoro, C. Wilkins, and S. H. Friedman, J. Am. Chem. Soc., 115, 6510 (1993)
  40. W. A. Scrivens, J. M. Tour, K. E. Creek, and L. Pirisi, J. Am. Chem. Soc., 116, 4517 (1994)
  41. P. M. Ajayan, Chem. Rev., 99, 1787 (1999)