DOI QR코드

DOI QR Code

Viability and Functions of Alginate-microencapsulated Islets Isolated from Neonatal Pigs

  • Lin, Yi-Juain ;
  • Wang, Jui-Ping ;
  • Chung, Yu-Tung ;
  • Sun, Yu-Ling ;
  • Chou, Yu-Chi
  • Received : 2006.08.07
  • Accepted : 2006.12.06
  • Published : 2007.05.01

Abstract

Patients with Type I diabetes mellitus have been treated with porcine insulin for several decades and pigs have recently been deemed an ideal source of microencapsulated islet cells for clinical xenotransplantation. In this study, neonatal pigs were anesthetized and sacrificed prior to a pancreatectomy. Islet cells were isolated from pancreas via collagenase digestion. Islet cells were separated and collected by hand under microscopic guidance. These cells were suspended in 1.4% sodium alginate solution and encapsulated by dropping them into 1.1% calcium chloride solution and in which the round gel in size was 250-400 ${\mu}m$ in diameter. Viability of the microencapsulated islet cells cultured in medium at $37^{\circ}C$ was assessed by MTT assay. Furthermore, insulin released in response to glucose challenge was investigated using an enzyme-linked immunosorbent assay. Secretion of insulin was low in response to the basal glucose solution (4.4 mM) in medium and was significantly higher in response to the high glucose solution (16.7 mM). The viability of microencapsulated islet cells did not differ significantly over a period of 7 days; that is, the increasing pattern of insulin concentration in the culture medium after glucose stimulation interval day was similar throughout the 7 days cultivation. In summary, experimental evidences indicated that the effects of alginate-microencapsulation prolonged survival of the neonatal porcine islets in vitro cultures and the insulin response to glucose of the islets was maintained.

Keywords

Neonatal Pig;Islet;Microencapsulation;Insulin;Insulin Secretory Responsiveness

References

  1. Cardona, K., G. S. Korbutt, Z. Milas, J. Lyon, J. Cano, W. Jiang, H. Bello-Laborn, B. Hacquoil, E. Strobert, S. Gangappa, C. J. Weber, T. C. Pearson, R. V. Rajotte and C. P. Larsen. 2006. Long-term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways. Nat. Med. 12:304-306. https://doi.org/10.1038/nm1375
  2. Diabetes Control and Complications Trial Research Group. 1993. The effect of intensive treatment of diabetes on the development and progression of long term complications in insulin dependent diabetes mellitus. New Eng. J. Med. 329:977-986. https://doi.org/10.1056/NEJM199309303291401
  3. Krickhahn, M., C. Buhler, T. Meyer, A. Thiede and K. Ulrichs. 2002. The morphology of islets within the porcine donor pancreas determines the isolation result: successful isolation of pancreatic islets can now be achieved from young market pigs. Cell Transplan. 11:827-838.
  4. Lim, F. and A. M. Sun. 1980. Microencapsulated islets as a bioartificial endocrine pancreas. Sci. 210:908-910. https://doi.org/10.1126/science.6776628
  5. Monroy, B., J. Honiger, S. Darquy and G. Reach. 1997. Use of polyethyleneglycol for porcine islet cryopreservation. Cell Transplant. 6:613-621. https://doi.org/10.1016/S0963-6897(97)00097-3
  6. Opara, E. C., V. S. Hubbard, W. M. Burch and O. E. Akwari. 1992. Characterization of the insulinotropic potency of polyunsaturated fatty acids. Endocrinol. 130:657-662. https://doi.org/10.1210/en.130.2.657
  7. Panza, J. L., W. R. Wagner, H. L. Rilo, R. H. Rao, E. J. Beckman and A. J. Russell. 2000. Treatment of rat pancreatic islets with reactive PEG. Biomaterials 21:1155-1164. https://doi.org/10.1016/S0142-9612(99)00283-5
  8. Rayat, G. R., R. V. Rajotte and G. S. Korbutt. 1999. Potential application of neonatal porcine islets as treatment for type 1 diabetes: a review. Ann. N. Y. Acad. Sci. 875:175-188. https://doi.org/10.1111/j.1749-6632.1999.tb08502.x
  9. Ricordi, C., D. W. Gray, B. J. Hering, D. B. Kaufman, G. L. Warnock, N. M. Kneteman, S. P. Lake, N. J. London, C. Socci and R. Alejandro. 1990. Islet isolation assessment in man and large animals. Acta Diabetol. Lat. 27:185-195. https://doi.org/10.1007/BF02581331
  10. Shapiro, A. M. J., J. R. T. Lakey, E. A. Ryan, G. S. Korbutt, E. Toth, G. L. Warnock, N. M. Kneteman and R. V. Rajotte. 2000. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid free immunosuppressive regimen. New England J. Med. 343:230-238. https://doi.org/10.1056/NEJM200007273430401
  11. Ye, Y., M. Niekrasz, S. Kosanke, R. Welsh, H. E. Jordan, J. C. Fox, W. C. Edwards, C. Maxwell and D. K. Cooper. 1994. The pig as a potential organ donor for man. A study of potentially transferable disease from donor pig to recipient man. Transplant. 57:694-703. https://doi.org/10.1097/00007890-199403150-00011
  12. Beattie, G. M., J. S. Rubin, M. I. Mally, T. Otonkoski and A. Hayek. 1996. Regulation of proliferation and differentiation of human fetal pancreatic islet cells by extracellular matrix, hepatocyte growth factor, and cell-cell contact. Diabetes 45:1223-1228. https://doi.org/10.2337/diabetes.45.9.1223
  13. Bonner-Weir, S., M. Taneja, G. C. Weir, K. Tatarkiewicz, K. H. Song, A. Sharma and J. J. O'Neil. 2000. In vitro cultivation of human islets from expanded ductal tissue. Proc. Natl. Acad. Sci. USA 97:7999-8004. https://doi.org/10.1073/pnas.97.14.7999
  14. Brunicardi, F. C. and Y. Mullen. 1994. Issues in clinical islet transplantation. Pancreas 9:281-290. https://doi.org/10.1097/00006676-199405000-00001
  15. Han, S. E., H. G. Lee, C. H. Yun, Z. S. Hong, S. H. Kim, S. K. Kang, S. H. Kim, J. S. Cho, S. H. Ha and Y. J. Choi. 2005. Effect of cellular zinc on the regulation of C2-ceramide induced apoptosis in mammary epithelial and macrophage cell lines. Asian-Aust. J. Anim. Sci. 18:1741-1745. https://doi.org/10.5713/ajas.2005.1741
  16. Marchetti, P., E. H. Finke, A. Gerasimidi-Vazeou, L. Falqui and D. W. Scharp and P. E. Lacy. 1991. Automated large-scale isolation, in vitro function and xenotransplantation of porcine islets of Langerhans. Transplant. 52:209-213. https://doi.org/10.1097/00007890-199108000-00005
  17. Ryan, E. A., J. R. T. Lakey, B. Paty, S. Imes, G. S. Korbutt, N. M. Kneteman, D. Bigam, R. V. Rajotte and A. M. J. Shapiro. 2002. Successful islet transplantation: Continued insulin reserve provides long term glycemic control. Diabetes 51:2148-2157. https://doi.org/10.2337/diabetes.51.7.2148
  18. Yoon, K., R. R. Quickel, K. Tatarkiewicz, T. R. Ulrich, J. Hollister-Lock, N. Trivedi, S. Bonner-Weir and G. C. Weir. 1999. Differentiation and expansion of beta cell mass in porcine neonatal pancreatic cell clusters transplanted into nude mice. Cell Transplan. 8:673-689. https://doi.org/10.1177/096368979900800613
  19. Lacy, P. E., O. D. Hegre, A. Gerasimidi-Vazeou, F. T. Gentile and K. E. Dionne. 1991. Maintenance of normoglycemia in diabetic mice by subcutaneous xenografts of encapsulated islets. Sci. 254:1782-1784. https://doi.org/10.1126/science.1763328
  20. Balamurugan, A. N., B. Ramakrishna and S. Gunasekaran. 2004. Insulin secretory characteristics of monkey pancreatic islets: a simple method of islet isolation and the effect of various density gradients on separation. Diabetes Res. Clin. Pract. 66:13-21. https://doi.org/10.1016/j.diabres.2004.02.012
  21. Ryan, E. A., J. R. T. Lakey, R. V. Rajotte, G. S. Korbutt, T. Kin, S. Imes, A. Rabinovitch, J. F. Elliot, D. Bigam, N. M. Kneteman, G. L. Warnock, I. Larsen and A. M. J. Shapiro. 2001. Clinical outcomes and insulin secretion after islet transplantation with the Edmonton Protocol. Diabetes 50:710-719. https://doi.org/10.2337/diabetes.50.4.710
  22. Schaffellner, S., V. Stadlbauer, P. Stiegler, O. Hauser, G. Halwachs, C. Lackner, F. Iberer and K. H. Tscheliessnigg. 2005. Porcine islet cells microencapsulated in sodium cellulose sulfate. Transplant. Proc. 37:248-252. https://doi.org/10.1016/j.transproceed.2005.01.042
  23. Heald, K. A., T. R. Jay, D. Topham, J. Webberley and R. Downing. 1996. The effect of gnotobiotic rearing on porcine islet isolation and function. Transplan. Proc. 28:824-825.
  24. Kin, T., G. S. Korbutt, T. Kobayashi and J. M. Dufour. 2005. Reversal of diabetes in pancreatectomized pigs after transplantation of neonatal porcine islets. Diabetes 54:1032-1039. https://doi.org/10.2337/diabetes.54.4.1032
  25. Elliott, R. B., L. Escobar, P. L. J. Tan, O. Garkavenko, R. Calafiore, P. Basta, A. V. Vasconcellos, D. F. Emerich, C. Thanos and C. Bambra. 2005. Intraperitoneal alginate-encapsulated neonatal porcine islets in a placebo-controlled study with 16 diabetic cynomolgus primates. Transplan. Proc. 37:3505-3508. https://doi.org/10.1016/j.transproceed.2005.09.038
  26. MacKenzie, D. A., D. A. Hullett and H. W. Sollinger. 2003. Xenogeneic transplantation of porcine islets: an overview. Transplant. 76:887-891. https://doi.org/10.1097/01.TP.0000087114.18315.17
  27. Elliott, R. B., L. Escobar, R. Calafiore, G. Basta, O. Garkavenko, A. Vasconcellos and C. Bambra. 2005. Transplantation of micro- and macroencapsulated piglet islets into mice and monkeys. Transplan. Proc. 37:466-469. https://doi.org/10.1016/j.transproceed.2004.12.198
  28. Narang, A. S. and R. I. Mahato. 2006. Biological and biomaterial approaches for improved islet transplantation. Pharmaco. Rev. 58:194-243. https://doi.org/10.1124/pr.58.2.6
  29. Kin, T., H. Iwata, Y. Aomatsu, T. Ohyama, H. Kanehiro, M. Hisanaga and Y. Nakajima. 2002. Xenotransplantation of pig islets in diabetic dogs with use of a microcapsule composed of agarose and polystyrene sulfonic acid mixed gel. Pancreas 25:94-100. https://doi.org/10.1097/00006676-200207000-00020
  30. Zhang, C. Y., G. Baffy, P. Perret, S. Krauss, O. Peroni, D. Grujic, T. Hagen, A. J. Vidal-Puig, O. Boss, Y. B. Kim, X. X. Zheng, M. B. Wheeler, G. I. Shulman, C. B. Chan, B. B. Lowell. 2001. Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. Cell 105:745-755. https://doi.org/10.1016/S0092-8674(01)00378-6
  31. Archer, F. J. 1983. Monolayer culture of neonatal pig pancreatic islet cells. Diabetologia 24:185-190.
  32. Trivedi, N., J. Hollister-Lock, M. D. Lopez-Avalos, J. J. O'Neil, M. Keegan, S. Bonner-Weir and G. C. Weir. 2001. Increase in $\beta$- cell mass in transplanted porcine neonatal pancreatic cell clusters is due to proliferation of $\beta$-cells and differentiation of duct cells. Endocrinol. 142:2115-2122. https://doi.org/10.1210/en.142.5.2115
  33. Brit, L. D., P. C. Stojeba, C. R. Scharp, M. H. Greider and D. W. Scharp. 1981. Neonatal pig psuedo-islets. A product of selective aggregation. Diabetes 30:580-583. https://doi.org/10.2337/diabetes.30.7.580
  34. Garfinkel, M. R., R. C. Harland and E. C. Opara. 1998. Optimization of the microencapsulated islet for transplantation. J. Surg. Res. 76:7-10. https://doi.org/10.1006/jsre.1997.5258
  35. Korbutt, G. S., J. F. Elliott, Z. Ao, D. K. Smith, G. L. Warnock and R. V. Rajotte. 1996. Large scale isolation, growth, and function of porcine neonatal islet cells. J. Clin. Investig. 97:2119-2129. https://doi.org/10.1172/JCI118649
  36. Rayat, G. R., R. V. Rajotte, Z. Ao and G. S. Korbutt. 2000. Microencapsulation of neonatal porcine islets: Protection from human antibody/complement-mediated cytolysis in vitro and long-term reversal of diabetes in nude mice. Transplant. 69:1084-1090. https://doi.org/10.1097/00007890-200003270-00011
  37. Korbutt, G. S., A. G. Mallett, Z. Ao, M. Flashne and R. V. Rajotte. 2004. Improved survival of microencapsulated islets during in vitro culture and enhanced metabolic function following Transplantation. Diabetologia 47:1810-1818. https://doi.org/10.1007/s00125-004-1531-3

Acknowledgement

Supported by : Ministry of Economic Affairs, National Science Council of Executive Yuan of the Republic of China