Direct determination of gadolinium in urania-gadolinia nuclear fuels by inductively coupled plasma atomic emission spectrometry

유도결합플라스마 원자방출분광법을 이용한 UO2-Gd2O3 핵연료 중 가돌리늄 분석

  • Choi, Kwang-Soon (Nuclear Chemistry Research Center Korea Atomic Energy Research Institute) ;
  • Suh, Moo-Yul (Nuclear Chemistry Research Center Korea Atomic Energy Research Institute) ;
  • Lee, Chang-Heon (Nuclear Chemistry Research Center Korea Atomic Energy Research Institute) ;
  • Han, Sun-Ho (Nuclear Chemistry Research Center Korea Atomic Energy Research Institute) ;
  • Jee, Kwang-Yong (Nuclear Chemistry Research Center Korea Atomic Energy Research Institute)
  • 최광순 (한국원자력연구원 원자력화학연구센터) ;
  • 서무열 (한국원자력연구원 원자력화학연구센터) ;
  • 이창헌 (한국원자력연구원 원자력화학연구센터) ;
  • 한선호 (한국원자력연구원 원자력화학연구센터) ;
  • 지광용 (한국원자력연구원 원자력화학연구센터)
  • Received : 2006.11.07
  • Accepted : 2007.02.27
  • Published : 2007.04.28

Abstract

The urania-gadolinia fuels were dissolved with nitric acid. The analytical conditions of ICP-AES for the direct determinations of gadolinium in the uranium matrices without separation process were investigated. Based on the effect of uranium on gadolinium intensity, the best wavelength for gadolinium was 336.223 nm. The relative deviation of two methods, direct and indirect measurements with anion exchange chromatography, was less than 5 %. Therefore it was possible for this procedure directly to measure 5~10 wt.% of gadolinium in urania-gadolinia fuels without separation by ICP-AES.

Keywords

urania-gadolinia fuel;direct determination;gadolinium;ICP-AES

Acknowledgement

Supported by : 과학기술부

References

  1. A. G. I. Dalvi, C. S. Deodhar, B. D. Joshi, Talanta, 24, 143 (1976)
  2. E. A. Huff, E. P. Horwitz, Spectrochimica Acta, 40B, 279 (1985)
  3. 1987 Annual Book of ASTM Standards, Vol. 12.01, Nuclear Energy(1), R. A. Storer, Easton, Philadelphia, U.S.A., 350 (1987)
  4. A. S. Al-Ammar, H. A. Hamid, B. H. Rashid, H. M. Basheer, J. Chromator., 537, 287 (1991)
  5. P. Fuxing, Y. Suling, H. Qinghua, W. Xiaoping, M. Heying, H. Yanmin, X. Yuxin, X. Yi, W. Tingfang, Spectchimica Acta, 41B, 1211 (1986)
  6. G. Heitner-Wirguin, M. Gantz, Israel J. Chem., 12, 723 (1974)
  7. G. R. Harrison, Massachusetts Institute of Technology Wavelength Tables, M.I.T. Press, Cambridge, England, 1969
  8. T. K. Seshagiri, Y. Babu, M. L. Jayanth Kumar, A. G. I. Dalvi, M. D. Sastry, B. D. Joshi, Talanta, 31, 773 (1984)
  9. L. Goldstein, A. A. Strasser, Nucl. Technol., 60, 352 (1983)
  10. F. Flavelle and A. D. Westland, Talanta, 33, 445 (1986)
  11. J. L. Ryan, Inorg. Chem., 2, 348 (1963) https://doi.org/10.1021/ic50009a021
  12. R. K. Malhotra, K. Satyanarayana, Talanta, 50, 601 (1999)
  13. C. H. Lee, M. Y. Suh, K. S. Choi, J. S. Kim, B. C. Song, K. Y. Jee, W. H. Kim, Anal. Chim. Acta, 428, 133 (2001) https://doi.org/10.1016/S0003-2670(00)01175-2
  14. H. H. Durmazucar, U. Colak, B. Sarikaya, G. Gunduz, Nucl. Eng. Des., 203, 57 (2001) https://doi.org/10.1016/S0029-5493(00)00292-2
  15. H. O. Haug, Gmelin Handbook of Inorgnaic Chemistry, Uranium, Suppl. Vol. D3, R. Keim, Y. Marcus, C. Keller, Springer-Verlag, Berlin Heidelberg, Germany, 33-34 (1982)
  16. K. S. Choi, C. H. Lee, S. D. Park, Y. S. Park, K. S. Joe, Anal. Sci. & Tech., 13, 291 (2000)