DOI QR코드

DOI QR Code

Effect of Dendritic Cells Treated with CpG ODN on Atopic Dermatitis of Nc/Nga mice

  • Park, Sang-Tae (Laboratory of Dermato-Immunology, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea) ;
  • Kim, Kyoung-Eun (Laboratory of Dermato-Immunology, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea) ;
  • Na, Kwang-Min (Laboratory of Dermato-Immunology, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea) ;
  • Kim, Young-Hwa (Laboratory of Dermato-Immunology, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea) ;
  • Kim, Tae-Yoon (Laboratory of Dermato-Immunology, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea)
  • Published : 2007.07.31

Abstract

Atopic dermatitis (AD) is a chronic inflammatory skin disease and the pathogenesis of AD is associated with the release of various cytokines/chemokines due to activated $Th_2$ immune responses. Synthetic oligodeoxynucleotides (ODNs) containing unmethylated CpG dinucleotide in the context of particular base sequence (CpG motifs) are known to have the immunostimulatory activities in mice and to convert from Th2 to Th1 immune responses in AD. We aimed to investigate that CpG ODN, especially phosphodiester form, can stimulate the protective immunity in NC/Nga mice with AD. We isolated BMDCs from NC/Nga mice and then, cultured with GM-CSF and IL-4 for 6 days, and treated for 2 days by either phosphorothioate ODN or phosphodiester ODN. CpG ODN-treated DCs resulted in more production of IL-12. When CpG ODN-treated DCs were intravenously injected into the NC/Nga mice, the NC/Nga mice with CpG ODN-treated DCs showed significant improvement of AD symptoms and decrease of IgE level. Histopathologically, the NC/Nga mice skin with CpG ODN-treated DCs showed the decreased IL-4 and TARC expression comparing with non-injected mice. These results may suggest that phosphodiester CpG ODN-treated DCs might function as a potent adjuvant for AD in a mouse model.

Keywords

Atopic dermatitis (AD);IgE;IL-4;NC/Nga mice;Phosphodiester form

References

  1. Akdis, C. A., Akdis, M., Simon, D., Dibbert, B., Weber, M., Gratzl, S., Kreyden, O., Disch, R., Wuthrich, B., Blaser, K. and Simon, H. U. (1999) T cells and T cell-derived cytokines as pathogenic factors in the nonallergic form of atopic dermatitis. J. Invest Dermatol. 113, 628-634. https://doi.org/10.1046/j.1523-1747.1999.00720.x
  2. Akdis, C. A., Akdis, M., Trautmann, A. and Blaser, K. (2000) Immune regulation in atopic dermatitis. Curr. Opin. Immunol. 12, 641-646. https://doi.org/10.1016/S0952-7915(00)00156-4
  3. Brunner, C., Seiderer, J., Schlamp, A., Bidlingmaier, M., Eigler, A., Haimerl, W., Lehr, H. A., Krieg, A. M., Hartmann, G. and Endres, S. (2000) Enhanced dendritic cell maturation by TNFalpha or cytidine-phosphate-guanosine DNA drives T cell activation in vitro and therapeutic anti-tumor immune responses in vivo. J. Immunol. 165, 6278-6286. https://doi.org/10.4049/jimmunol.165.11.6278
  4. Choi, Y. J., Lee, K. W., Kwon, H. J. and Kim, D. S. (2006) Identification of immunostimulatory oligodeoxynucleotide from Escherichia coli genomic DNA. J. Biochem. Mol. Biol. 39, 788-793. https://doi.org/10.5483/BMBRep.2006.39.6.788
  5. Du, Y. C., Lin, P., Zhang, J., Lu, Y. R., Ning, Q. Z., and Wang, Q. (2006) Fusion of CpG-ODN-stimulating dendritic cells with Lewis lung cancer cells can enhance anti-tumor immune responses. Tissue Antigens 67, 368-376. https://doi.org/10.1111/j.1399-0039.2006.00590.x
  6. Edwards, A. D., Manickasingham, S. P., Sporri, R., Diebold, S. S., Schulz, O., Sher, A., Kaisho, T., Akira, S. and Reise Sousa, C. (2002) Microbial recognition via Toll-like receptor-dependent and -independent pathways determines the cytokine response of murine dendritic cell subsets to CD40 triggering. J. Immunol. 169, 3652-3660. https://doi.org/10.4049/jimmunol.169.7.3652
  7. Groneberg, D. A., Serowka, F., Peckenschneider, N., Artuc, M., Grutzkau, A., Fischer, A., Henz, B. M. and Welker, P. (2005) Gene expression and regulation of nerve growth factor in atopic dermatitis mast cells and the human mast cell line-1. J. Neuroimmunol. 161, 87-92. https://doi.org/10.1016/j.jneuroim.2004.12.019
  8. Heishi, M., Imai, Y., Katayama, H., Hashida, R., Ito, M., Shinagawa, A. and Sugita, Y. (2003) Gene expression analysis of atopic dermatitis-like skin lesions induced in NC/Nga mice by mite antigen stimulation under specific pathogen-free conditions. Int. Arch. Allergy Immunol. 132, 355-363. https://doi.org/10.1159/000074903
  9. Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K. and Akira, S. (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408, 740-745. https://doi.org/10.1038/35047123
  10. Homey, B., Steinhoff, M., Ruzicka, T. and Leung, D. Y. (2006) Cytokines and chemokines orchestrate atopic skin inflammation. J. Allergy Clin. Immunol. 118, 178-189. https://doi.org/10.1016/j.jaci.2006.03.047
  11. Jakob, T., Walker, P. S., Krieg, A. M., von Stebut, E., Udey, M. C., and Vogel, J. C. (1999) Bacterial DNA and CpG-containing oligodeoxynucleotides activate cutaneous dendritic cells and induce IL-12 production: implications for the augmentation of Th1 responses. Int. Arch. Allergy Immunol. 118, 457-461. https://doi.org/10.1159/000024163
  12. Kakinuma, T., Nakamura, K., Wakugawa, M., Mitsui, H., Tada, Y., Saeki, H., Torii, H., Asahina, A., Onai, N., Matsushima, K. and Tamaki, K. (2001) Thymus and activation-regulated chemokine in atopic dermatitis: Serum thymus and activationregulated chemokine level is closely related with disease activity. J. Allergy Clin. Immunol. 107, 535-541. https://doi.org/10.1067/mai.2001.113237
  13. King, C. L., Gallin, J. I., Malech, H. L., Abramson, S. L. and Nutman, T. B. (1989) Regulation of immunoglobulin production in hyperimmunoglobulin E recurrent-infection syndrome by interferon gamma. Proc. Natl. Acad. Sci. USA 86, 10085-10089. https://doi.org/10.1073/pnas.86.24.10085
  14. Luster, A. D. (2002) The role of chemokines in linking innate and adaptive immunity. Curr. Opin. Immunol. 14, 129-135. https://doi.org/10.1016/S0952-7915(01)00308-9
  15. Lutz, M. B., Kukutsch, N., Ogilvie, A. L., Rossner, S., Koch, F., Romani, N. and Schuler, G. (1999) An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Methods. 223, 77-92. https://doi.org/10.1016/S0022-1759(98)00204-X
  16. Matera, L., Mori, M. and Galetto, A. (2001) Effect of prolactin on the antigen presenting function of monocyte-derived dendritic cells. Lupus. 10, 728-734. https://doi.org/10.1191/096120301717164967
  17. Matsuda, H., Watanabe, N., Geba, G. P., Sperl, J., Tsudzuki, M., Hiroi, J., Matsumoto, M., Ushio, H., Saito, S., Askenase, P. W. and Ra, C. (1997) Development of atopic dermatitis-like skin lesion with IgE hyperproduction in NC/Nga mice. Int. Immunol. 9, 461-466. https://doi.org/10.1093/intimm/9.3.461
  18. Matsumoto, M., Ra C., Kawamoto, K., Sato, H., Itakura, A., Sawada, J., Ushio, H., Suto, H., Mitsuishi, K., Hikasa, Y. and Matsuda, H. (1999) IgE hyperproduction through enhanced tyrosine phosphorylation of Janus kinase 3 in NC/Nga mice, a model for human atopic dermatitis. J. Immunol. 162, 1056-1063.
  19. Moser, M. and Murphy, K. M. (2000) Dendritic cell regulation of TH1-TH2 development. Nat. Immunol. 1, 199-205. https://doi.org/10.1038/79734
  20. Nakamura, H., Aoki, M., Tamai, K., Oishi, M., Ogihara, T., Kaneda, Y. and Morishita, R. (2002) Prevention and regression of atopic dermatitis by ointment containing NF-kB decoy oligodeoxynucleotides in NC/Nga atopic mouse model. Gene Ther. 9, 1221-1229. https://doi.org/10.1038/sj.gt.3301724
  21. Nakazawa, M., Sugi, N., Kawaguchi, H., Ishii, N., Nakajima, H., and Minami, M. (1997) Predominance of type 2 cytokineproducing $CD^{4+}$ and $CD^{8+}$ cells in patients with atopic dermatitis. J. Allergy Clin. Immunol. 99, 673-682. https://doi.org/10.1016/S0091-6749(97)70030-7
  22. Ni, K. and O'Neill, H. C. (2000) Improved FACS analysis confirms generation of immature dendritic cells in long-term stromal-dependent spleen cultures. Immunol. Cell Biol. 78, 196-204. https://doi.org/10.1046/j.1440-1711.2000.00897.x
  23. Pilon-Thomas, S., Li, W., Briggs, J. J., Djeu, J., Mule, J. J. and Riker, A. I. (2006) Immunostimulatory effects of CpG-ODN upon dendritic cell-based immunotherapy in a murine melanoma model. J. Immunother. 29, 381-387. https://doi.org/10.1097/01.cji.0000199199.20717.67
  24. Ramirez-Pineda, J. R., Frohlich, A., Berberich, C. and Moll, H. (2004) Dendritic cells (DC) activated by CpG DNA ex vivo are potent inducers of host resistance to an intracellular pathogen that is independent of IL-12 derived from the immunizing DC. J. Immunol. 172, 6281-6289. https://doi.org/10.4049/jimmunol.172.10.6281
  25. Reinhold, U., Pawelec, G., Wehrmann, W., Herold, M., Wernet, P. and Kreysel, H. W. (1998) Immunoglobulin E and immunoglobulin G subclass distribution in vivo and relationship to in vitro generation of interferon-gamma and neopterin in patients with severe atopic dermatitis. Int. Arch. Allergy Appl. Immunol. 87, 120-126.
  26. Renz, H., Brodie, C., Bradley, K., Leung, D. Y. and Gelfand, E. W. (1994) Enhancement of IgE production by anti-CD40 antibody in atopic dermatitis. J. Allergy Clin. Immunol. 93, 658-668. https://doi.org/10.1016/S0091-6749(94)70078-8
  27. Rodriguez, T., Perez, O., Menager, N., Ugrinovic, S., Bracho, G., and Mastroeni, P. (2005) Interactions of proteoliposomes from serogroup B Neisseria meningitidis with bone marrow-derived dendritic cells and macrophages: adjuvant effects and antigen delivery. Vaccine 23, 1312-1321. https://doi.org/10.1016/j.vaccine.2004.07.049
  28. Rudikoff, D. and Lebwohl, M. (1998) Atopic dermatitis. Lancet 351, 1715-1721. https://doi.org/10.1016/S0140-6736(97)12082-7
  29. Saeki, H. and Tamaki, K. (2006) Thymus and activation regulated chemokine (TARC)/CCL17 and skin diseases. J Dermatol Sci. 43, 75-84. https://doi.org/10.1016/j.jdermsci.2006.06.002
  30. Sakamoto, T., Miyazaki, E., Aramaki, Y., Arima, H., Takahashi, M., Kato, Y., Koga, M. and Tsuchiya, S. (2004) Improvement of dermatitis by iontophoretically delivered antisense oligonucleotides for interleukin-10 in NC/Nga mice. Gene Ther. 11, 317-324. https://doi.org/10.1038/sj.gt.3302171
  31. Santini, S. M. and Belardelli, F. (2003) Advances in the use of dendritic cells and new adjuvants for the development of therapeutic vaccines. Stem Cells 21, 495-505. https://doi.org/10.1634/stemcells.21-4-495
  32. Sasakawa, T., Higashi, Y., Sakuma, S., Hirayama, Y., Sasakawa, Y., Ohkubo, Y., Goto, T., Matsumoto, M. and Matsuda, H. (2001) Atopic dermatitis-like skin lesions induced by topical application of mite antigens in NC/Nga mice. Int. Arch. Allergy Immunol. 126, 239-247. https://doi.org/10.1159/000049520
  33. Sato, M., Chamoto, K. and Nishimura, T. (2003) A novel tumorvaccine cell therapy using bone marrow-derived dendritic cell type 1 and antigen-specific Th1 cells. Int. Immunol. 15, 837-843. https://doi.org/10.1093/intimm/dxg081
  34. Scheicher, C., Mehlig, M., Zecher, R. and Reske, K. (1992) Dendritic cells from mouse bone marrow: in vitro differentiation using low doses of recombinant granulocyte-macrophage colony-stimulating factor. J. Immunol. Methods 154, 253-264. https://doi.org/10.1016/0022-1759(92)90199-4
  35. Song, T. W., Sohn, M. H., Kim, E. S., Kim, K. W. and Kim, K. E. (2006) Increased serum thymus and activation-regulated chemokine and cutaneous T cell-attracting chemokine levels in children with atopic dermatitis. Clin. Exp. Allergy 36, 346-351. https://doi.org/10.1111/j.1365-2222.2006.02430.x
  36. Stein, C. A., Subasinghe, C., Shinozuka, K. and Cohen, J. S. (1988) Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic. Acids Res. 16, 3209-3221. https://doi.org/10.1093/nar/16.8.3209
  37. Suto, H., Matsuda, H., Mitsuishi, K., Hira, K., Uchida, T., Unno, T., Ogawa, H. and Ra, C. (1999) NC/Nga mice: a mouse model for atopic dermatitis. Int. Arch. Allergy Immunol. 120, 70-75. https://doi.org/10.1159/000053599
  38. Takakura, M., Takeshita, F., Aihara, M., Xin, K. Q., Ichino, M., Okuda, K. and Ikezawa, Z. (2005) Hyperproduction of IFNgamma by CpG oligodeoxynucleotide-induced exacerbation of atopic dermatitis-like skin lesion in some NC/Nga mice. J. Invest. Dermatol. 125, 1156-1162 https://doi.org/10.1111/j.0022-202X.2005.23928.x
  39. Takano, N., Sakurai, T. and Kurachi, M. (2005) Effects of antinerve growth factor antibody on symptoms in the NC/Nga mouse, an atopic dermatitis model. J. Pharmacol. Sci. 99, 277-286. https://doi.org/10.1254/jphs.FP0050564
  40. Vestergaard, C., Yoneyama, H. and Matsushima, K. (2000) The NC/Nga mouse: a model for atopic dermatitis. Mol. Med. Today 6, 209-210. https://doi.org/10.1016/S1357-4310(00)01683-X
  41. Voigtlander, C., Rossner, S., Cierpka, E., Theiner, G., Wiethe, C., Menges, M., Schuler, G. and Lutz, M. B. (2006) Dendritic cells matured with TNF can be further activated in vitro and after subcutaneous injection in vivo which converts their tolerogenicity into immunogenicity. J. Immunother. 29, 407-415. https://doi.org/10.1097/01.cji.0000210081.60178.b4
  42. Wang, J., Alvarez, R., Roderiquez, G., Guan, E., Caldwell, Q., Wang, J., Phelan, M. and Norcross, M. A. (2005) CpG-independent synergistic induction of beta-chemokines and a dendritic cell phenotype by orthophosphorothioate oligodeoxynucleotides and granulocyte-macrophage colony-stimulating factor in elutriated human primary monocytes. J. Immunol. 174, 6113-6121. https://doi.org/10.4049/jimmunol.174.10.6113
  43. Wohlleben, G. and Erb, K. J. (2001) Atopic disorders: a vaccine around the corner? Trends Immunol. 22, 618-626. https://doi.org/10.1016/S1471-4906(01)02055-5
  44. Wollenberg, A. and Bieber, T. (2000) Atopic dermatitis: from the genes to skin lesions. Allergy. 55, 205-213. https://doi.org/10.1034/j.1398-9995.2000.00115.x
  45. Yagi, R., Nagai, H., Iigo, Y., Akimoto, T., Arai, T. and Kubo, M. (2002) Development of atopic dermatitis-like skin lesions in STAT6-deficient NC/Nga mice. J. Immunol. 168, 2020-2027. https://doi.org/10.4049/jimmunol.168.4.2020
  46. Zhao, Q., Matson, S., Herrera, C. J., Fisher, E., Yu, H. and Krieg, A. M. (1993) Comparison of cellular binding and uptake of antisense phosphodiester, phosphorothioate, and mixed phosphorothioate and methylphosphonate oligonucleotides. Antisense Res. Dev. 3, 53-66. https://doi.org/10.1089/ard.1993.3.53

Cited by

  1. pcDNA-IL-12 vaccination blocks eosinophilic inflammation but not airway hyperresponsiveness following murine Toxocara canis infection vol.26, pp.3, 2008, https://doi.org/10.1016/j.vaccine.2007.11.023
  2. Effect of atorvastatin on dendritic cells of tubulointerstitium in diabetic rats vol.43, pp.3, 2010, https://doi.org/10.5483/BMBRep.2010.43.3.188
  3. The stimulatory effect of different CpG oligonucleotides on the maturation of chicken bone marrow-derived dendritic cells vol.93, pp.1, 2014, https://doi.org/10.3382/ps.2013-03431
  4. Alterations in myeloid dendritic cell innate immune responses in the Gαi2-deficient mouse model of colitis vol.15, pp.2, 2009, https://doi.org/10.1002/ibd.20744