The Emission of NO2 and NH3 in Selective Catalytic Reduction over Manganese Oxide with NH3 at Low Temperature

망간계 금속산화물을 이용한 저온 선택적 촉매 환원 반응에서 NO2와 NH3 배출

  • Kim, Sung Su (Department of Environmental Engineering, Kyonggi University) ;
  • Hong, Sung Chang (Department of Environmental Engineering, Kyonggi University)
  • 김성수 (경기대학교 공과대학 환경공학과) ;
  • 홍성창 (경기대학교 공과대학 환경공학과)
  • Received : 2007.03.09
  • Accepted : 2007.04.09
  • Published : 2007.06.10

Abstract

The catalytic behavior of the manganese oxides was studied for the selective catalytic reduction with ammonia at a low temperature condition under $200^{\circ}C$. Outlet unreacted ammonia increases with decreasing temperature and increasing $NH_3/NOx$ mole ratio, however $NO_2$ shows an opposite result. $NO_2$ is generated by the adsorption of NO on the catalyst and the following oxidization to nitrates. Unreacted NH3 slip is not observed even at the $NH_3/NOx$ feed ratio above 1.0 due to the reaction between formed nitrates on the catalyst and adsorbed ammonia. The addition of Zr increases $NO_2$ generation, whereas the addition of CeO2 on the catalyst decreases $NO_2$ generation. Furthermore, the additon of the metal oxide induce DeNOx efficiency to reduce.

Keywords

selective catalytic reduction;manganese oxides;$NH_3$;$NO_2$

References

  1. J. Y. Lee, S. B. Kim, and S. C. Hong, Chemosphere, 50, 1115 (2003) https://doi.org/10.1016/S0045-6535(02)00708-7
  2. K. Eguchi, T. Konodo, T. Hagashi, and H. Arai, Appl. Catal. B: Environ., 16, 69 (1998)
  3. I. Y. Lee, D. W. Kim, J. B. Lee, and K. O. Yoo, Chem. Eng. J., 90, 267 (2002) https://doi.org/10.1016/S1385-8947(02)00018-9
  4. S. K. Jeong and Ph. D. Dissertation, Korea Univ., Seoul. Korea (2000)
  5. W. S. Kijlstra, D. S. Brands, H. I. Smit, E. K. Poles, and A. Bliek, J. Catal., 171, 219 (1997)
  6. L. Lietti, Appl. Catal. B: Environ, 10, 281 (1996)
  7. T. Yamashita, and A. Vannice, Appl. Catal. B : Environ., 13, 141 (1997)
  8. G. Busca, L. Lietti, G. Ramis, and F. Berti, Appl. Catal. B: Environ., 18, 1 (1998)
  9. S. Hamoudi, F. Larachi, A. Adnot, and A. Sayart, J. Catal., 185, 333 (1999)
  10. J. C. Baller, H. J. Emeleus, R. S. Nyholm, and A. F. Trotman-Dickenson, Comprehensive Inorganic Chemistry, 3, Pergamon Press (1976)
  11. Z. Zhu, Z. Liu, S. Liu, and H. Nia, Appl. Catal. B : Environ., 30, 267 (2001) https://doi.org/10.1016/S0926-3373(00)00239-3
  12. L. L. Sloss, A. K. Hjalamasson, H. N. Soud, L. M. Campbell, D. K. Stome, G. S. Shareef, T. Emnel, M. Maibodi, C. D. Livengood, and J. Markussen, Nitrogen Oxides Technology Fact Book, Noyes Data Corporation, USA (1992)
  13. J. Blanco, P. Avila, S. Suarez, J. A. Martin, and C. Knapp, Appl. Catal. B: Environ., 28, 235 (2000) https://doi.org/10.1016/S0926-3373(00)00180-6
  14. L. Singredjo, R. Kover, F. Kapteijn, and J. A. Moulijn, Appl. Catal. B:Environ., 1, 297 (1992) https://doi.org/10.1016/0926-3373(92)80055-5
  15. H. Bosch and F. Janssen, Catal. Today, 2, 369 (1988) https://doi.org/10.1016/0920-5861(88)80002-6
  16. F. Kapteijn, L. Singredjo, N. J. J. Dekker, and J. A. Moulijn, Ind. Eng. Chem. Res., 32, 445 (1993)
  17. T. S. Park, S. K. Jeong, S. H. Hong, and S. C. Hong, Ind. Eng. Chem. Res., 40, 4491 (2001) https://doi.org/10.1021/ie010218+