Effects of Gal-13 on the Content of Immunoglobulin, Proliferation of Lymphocyte and Antibody Titers after Vaccination with Infectious Bursal Disease Virus Vaccine in Chickens

  • Yang, Yurong (College of Animal and Veterinary Engineering, Henan Agricultural University) ;
  • Jiang, Yibao (College of Animal and Veterinary Engineering, Henan Agricultural University) ;
  • She, Ruiping (China Agricultural University) ;
  • Peng, Kaisong (China Agricultural University) ;
  • Zhou, Xuemei (China Agricultural University) ;
  • Yin, Qingqiang (College of Animal and Veterinary Engineering, Henan Agricultural University) ;
  • Wang, Decheng (China Agricultural University) ;
  • Liu, Tianlong (China Agricultural University) ;
  • Bao, Huihui (China Agricultural University)
  • Received : 2006.03.06
  • Accepted : 2006.06.06
  • Published : 2007.03.01


Gal-13 is an antimicrobial peptide isolated from chicken intestine. Ninety chickens were randomly divided into two groups (45 chickens for each group) to determine the effect of oral administration of Gal-13 on the acquired immune response. The chickens in the first group were fed a diet without Gal-13 as the control, and the chickens in the second group were fed the same diet, except that Gal-13 ($1{\mu}g/ml$) was suspended in drinking water just after hatching. Samples of blood, thymus, bursa of fabricius and spleen were taken at day 1, 4, 7, 10 and 17. The chickens in both groups received infectious bursal disease virus vaccine at day 20, and then sera samples were collected for analysis at 14, 21, 28 and 35 days after vaccination. The results showed: (1) Gal-13 could enhance the content of immunoglobulin (Ig)G at the age of 4 to10 days (p<0.05) and IgM at the age of 4 and 10 days (p<0.05) in the serum; (2) In vitro experiments showed that Gal-13 (0.625-1.250${\mu}g/ml$) enhanced the proliferation of peripheral blood lymphocytes of the chickens stimulated by lipopolysaccharide (LPS) and concanavlin A (ConA). Compared to the control, Gal-13 (1 ${\mu}g/ml$) enhanced the proliferation of bursa lymphocytes at 17 days of age (p<0.01) and thymus lymphocytes at 7 days of age (p<0.01), but restrained lymphocyte proliferation in chicken spleen and differed significantly at day 10 (p<0.01); (3) Gal-13 enhanced infectious bursal disease virus antibody in sera of chickens 21 days after infectious bursal disease virus vaccine administration (p<0.05). These results suggested that Gal-13 could modulate adaptive immune responses of chickens.


Supported by : National Natural Science Foundation of China


  1. Lehrer, R. I., M. Rosenman, S. S. Harwig, R. Jackson and P. Eisenhauer. 1991. Ultrasensitive assays for endogenous antimicrobial polypeptides. J. Immunol. Methods. 137(2):167-173.
  2. Lichtenstein, A. K., T. Ganz, T. M. Nguyen, M. E. Selsted and R. I. Lehrer. 1988. Mechanism of target cytolysis by peptide defensins. Target cell metabolic activities, possibly invoving endocytosis, are crucial for expression of cytotoxicity. J. Immunol. 140:2686-2694.
  3. Schagger, H. and von Jagow G. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166(2):368-379.
  4. Shi, J. C., R. Ross, M. M. Chengappa and F. Blecha. 1994. Identification of a proline-arginine-rich antibacterial peptide from neutrophils that is analogous to PR-39, an antibacterial peptide from the small intestine. J. Leukocyte Biol. 56:807-811.
  5. Tani, K. J., W. J. Murphy, O. Chertov, R. Salcedo, C. Y. Koh, I. Utsunomiya, S. Funakoshi, O. Asai, S. H. Herrmann, J. M. Wang, L. W. Kwak and J. J. Oppenheim. 2000. Defensins act as potent adjuvants that promote cellular and humoral immune responses in mice to a lymphoma idiotype and carrier antigens. Int. Immunol. 12(5):691-700.
  6. Wang, Y. Z., Z. R. Xu, W. X. Lin, H. Q. Huang and Z. Q. Wang. 2004. Developmental Gene Expression of Antimicrobial Peptide PR-39 and Effect of Zinc Oxide on Gene Regulation of PR-39 in Piglets. Asian-Aust. J. Anim. Sci. 17(12):1635-1640.
  7. Yang, D., A. Biragyn, L. W. Kwak and J. J. Oppenheim. 2002. Mammalian defensins in immunity: more than just microbicidal. Trends Immunol. 23(6):291-296.
  8. Yang, D., O. Chertov, S. N. Bykovskaia, Q. Chen, M. J. Buffo, J. Shogan, M. Anderson, J. M. Schroder, J. M. Wang, O. M. Howard and J. J. Oppenheim. 1999. ${\beta}-Defensins$: linking innate and adaptive immunity through dendritic and T cell CCR6. Sci. 286(5439):525-528.
  9. Lillard, J. W. J. R., P. N. Boyaka, O. Chertov, J. J. Oppenheim and J. R. Mcghee. 1999. Mechanisms for induction of acquired host immunity by neutrophil peptide defensins. Proc. Natl. Acad. Sci. 96:651-656.
  10. Yang, Y. R., S. M. Zheng, J. Liu and Y. B. Jiang. 2005. Dynamic changes of the relative content of immunoglobulins in local humor and immune organs index of chicks administrated with probiotics. Acta Veterinaria et Zootechnica Sinica (China). 36(4):352-356
  11. Chertov, O., D. F. Michiel, L. Xu, J. M. Wang, K. Tani, W. J. Murphy, D. L. Longo, D. D. Taub and J. J. Oppenheim. 1996. Identification of defensin-1, defensin-2, and CAP37 1azurocidin as T-cell chemoattractant proteins released from interleukin-8-stimulated neutrophils. J. Biol. Chem. 271:2935-2940.
  12. Okrent, D. G., A. K. Lichtenstein and T. Ganz. 1990. Direct cytotoxicity of polymorphonuclear leukocyte granule proteins to human lung-derived cells and endothelial cells. Am. Rev. Respir Dis. 141:179-185.
  13. Mingxing Ding, Zonghui Yuan, Yulian Wang, Huiling Zhu and Shengxian Fan. 2005. Effects of Olaquindox and Cyadox on Immunity of Piglets Orally Inoculated with Escherichia coli. Asian-Aust. J. Anim. Sci. 18(9):1320-1325
  14. Ghosh, D., E. Porter, B. Shen, S. K. Lee, D. Wilk, J. Drazba, S. P. Yadav, J. W. Crabb, T. Ganz and C. L. Bevins. 2002. Paneth cell trypsin is the processing enzyme for human defensin-5. Nat Immunol. 3(6):583-590.
  15. Xiao, Y. J., A. L. Hughes, J. Ando and Y. Matsuda. 2004. A genome-wide screen identifies a single ${\beta}-defensin$ gene cluster in the chicken: implications for the origin and evolution of mammalian defensins. BMC Genomics 5:56-66.
  16. Ahn, B. S., B. S. Jeon, E. G. Kwon, M. Ajmal Khan, H. S. Kim, J. C. Ju and N. S. Kim. 2006. Estimation of Genetic Parameters for Daily Milk Yield, Somatic Cell Score, Milk Urea Nitrogen, Blood Glucose and Immunoglobulin in Holsteins. Asian-Aust. J. Anim. Sci. 19(9):1252- 1256.
  17. Oppenheim, J. J., A. Biragyn, L. W. Kwak and D. Yang. 2003. Roles of antimicrobial peptides such as defensins in innate and adaptive immunity. Ann Rheum Dis. 62(90002): ii17-21.
  18. Biragyn, A., M. Surenhu, D. Yang, P. A. Ruffini, B. A. Haines, E. Klyushnenkova, J. J. Oppenheim and L. W. Kwak. 2001. Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens. J. Immunol. 167:6644-6653.
  19. Hancock, R. E. W. and M. G. Scott. 2000. The role of antimicrobial peptides in animal defences. Proc. Natl. Acad. Sci. USA. 97:8856-8861.
  20. Brogden, K. A., M. Heidari, R. E. Sacco, D. Palmquist, J. M. Guthmiller, G. K. Johnson, H. P. Jia, B. F. Tack and P. B. McCray. 2003. Defensin-induced adaptive immunity in mice and its potential in preventing periodontal disease. Oral Microbiol. Immun. 18:95-99.
  21. Fritz, J. H., S. Brunner, M. L. Birnstiel, M. Buschle, A. V. Gabain, F. Mattner and W. Zauner. 2004. The artificial antimicrobial peptide KLKLLLLLKLK induces predominantly a TH2-type immune response to co-injected antigens. Vaccine. 22:3274-3284.
  22. Ganz, T. Defensin: antimicrobial peptides of innate immunity. 2003. Nature rev. immunol. 3:710-720.