DOI QR코드

DOI QR Code

Polymorphism Identification, RH Mapping and Association of ${\alpha}$-Lactalbumin Gene with Milk Performance Traits in Chinese Holstein

  • Zhang, Jian ;
  • Sun, Dongxiao ;
  • Womack, J.E. ;
  • Zhang, Yi ;
  • Wang, Yachun ;
  • Zhang, Yuan
  • Received : 2006.09.26
  • Accepted : 2007.04.07
  • Published : 2007.09.01

Abstract

Lactose synthase catalyses the formation of lactose which is the major osmole of bovine milk and regulates the milk volume. Alpha-lactalbumin (${\alpha}$-LA) is involved in the synthesis of lactose synthase in the mammary gland. Therefore ${\alpha}$-LA is regarded as a plausible candidate gene for the milk yield trait. To determine whether ${\alpha}$-LA is associated with milk performance traits, 1,028 Chinese Holstein cows were used to detect polymorphisms in the ${\alpha}$-LA by means of single-strand conformation polymorphism (SSCP). Two nucleotide transitions were identified in the 5'flanking region and intron 3 of ${\alpha}$-LA. Associations of such polymorphisms with five milk performance traits were analyzed using a general linear model procedure. No significant associations were observed between these polymorphisms and the five milk performance traits (p>0.05). RH mapping placed ${\alpha}$-LA on BTA5q21, linked most closely to markers U63110, CC537786 and L10347 (LOD>8.3), which is far distant from the region of the quantitative trait locus (QTL) on bovine chromosome 5 for variation in the milk yield trait. In summary, based on our findings, we eliminated these SNPs from having an effect on milk performance traits.

Keywords

${\alpha}$-Lactalbumin;SNP;Milk Performance Traits;RH Mapping;Chinese Holstein

References

  1. Bennewitz, J., N. Reinsch, C. Grohs, H. Leveziel, A. Malafosse, H. Thomsen, N. Xu, C. Looft, C. Kuhn, G. A. Brockmann, M. Schwerin, C. Weimann, S. Hiendleder, G. Erhardt, I. Medjugorac, I. Russ, M. Forster, B. Brenig, F. Reinhardt, R. Reents, G. Averdunk, J. Blumel, D. Boichard and E. Kalm. 2003. Combined analysis of data from two granddaughter designs: A simple strategy for QTL confirmation and increasing experimental power in dairy cattle. Genet. Sel. Evol. 35:319-338 https://doi.org/10.1186/1297-9686-35-3-319
  2. De Koning, D. J., N. F. Schulmant, K. Elo, S. Moisio, R. Kinos, J. Vilkki and A. Maki-Tanila. 2001. Mapping of multiple quantitative trait loci by simple regression in half-sib designs. J. Anim. Sci. 79:616-22 https://doi.org/10.2527/2001.793616x
  3. Everts-van der Wind, A., D. M. Larkin, C. A. Green, J. S. Elliott, C. A. Olmstead, R. Chiu, J. E. Schein, M. A. Marra, J. E. Womack and H. A. Lewin. 2005. A high-resolution wholegenome cattle-human comparative map reveals details of mammalian chromosome evolution. Proc. Natl. Acad. Sci. USA. 102(51):18526-18531 https://doi.org/10.1073/pnas.0509285102
  4. Goodman, R. E. and F. L. Schanbacher. 1991. Bovine lactoferrin mRNA: sequence, analysis and expression in the mammary gland. Biochem. Biophys. Res. Commun. 180:75 https://doi.org/10.1016/S0006-291X(05)81257-4
  5. Dayal, S., T. K. Bhattacharya, V. Vohra, P. Kumar and Arjava Sharma. 2006. Effect of Alpha-lactalbumin Gene Polymorphism on Milk Production Traits in Water Buffalo. Asian-Aust. J. Anim. Sci. 19(3):305-308 https://doi.org/10.5713/ajas.2006.305
  6. Bleck, G. T. and R. D. Bremel. 1993a. Sequence and single-base polymorphisms of the bovine $\alpha$-lactalbumin 5'-flanking region. Gene. 126:213-218 https://doi.org/10.1016/0378-1119(93)90369-E
  7. Bleck, G. T. and R. D. Bremel. 1993b. Correlation of the $\alpha$- lactalbumin (+15) polymorphism to milk production and milk composition of Holsteins. J. Dairy Sci. 76:2292-2298 https://doi.org/10.3168/jds.S0022-0302(93)77566-9
  8. Kuhn, N. J., D. T. Carrick and C. J. Wilde. 1980. Lactose synthesis: The Possibilities of Regulation. J. Dairy Sci. 63:328- 336 https://doi.org/10.3168/jds.S0022-0302(80)82934-1
  9. Groeneveld Eildert. 1990. PEST User's Manual. Institute of animal husbandry and animal behaviour federal agricultural research centre (FAL) Germany
  10. Hayes, H. C., P. Popescu and B. Dutrillaux. 1993. Comparative gene mapping of lactoperoxidase, retinoblastoma, and alphalactalbumin genes in cattle, sheep, and goats. Mamm. Genome. 4(10):593-597 https://doi.org/10.1007/BF00361391
  11. Naoya, I., A. Takasuga, K. Mizoshita, H. Takeda, M. Sugimoto, Y. Mizoguchi, T. Hirano, T. Itoh, T. Watanabe, K. M. Reed, W. M. Snelling, S. M. Kappes, C. W. Beattie, G. L. Bennett and Y. Sugimoto. 2004. A Comprehensive Genetic Map of the Cattle Genome Based on 3802 Microsatellites. Genome Res. 14:1987-1998 https://doi.org/10.1101/gr.2741704
  12. Lynch, M. and B. Walsh. 1997. Genetics and analysis of quantitative traits. Sinauer Associates, Inc., Sunderland, Massachusetts
  13. Mao, Y. J., G. H. Zhong, Y. C. Zheng, X. W. Pen, Z. P. Yang, Y. Wang and M. F. Jiang. 2004. Genetic Polymorphism of Milk Protein and Their Relationships with Milking Traits in Chinese Yak. Asian-Aust. J. Anim. Sci. 17(11):1479-1483 https://doi.org/10.5713/ajas.2004.1479
  14. Larson, B. L. 1985. Lactation. The Iowa State Press, Ames
  15. Tucker, H. A. 1981. Physiological control of mammary growth, lactogenesis, and lactation. J. Dairy Sci. 64:1403-1421 https://doi.org/10.3168/jds.S0022-0302(81)82711-7
  16. Slonim, D., L. Kruglyak, L. Stein and E. Lander. 1997. Building human genome maps with radiation hybrids. Journal of computational biology: a journal of computational Mol. Cell Bio. 4(4):487-504 https://doi.org/10.1089/cmb.1997.4.487
  17. SAS Institute. 2001. Version 8.2. SAS Institute Inc., Cary, NC
  18. Qu, l. J., X. Li, G. Q. Wu and N. Yang. 2005. Efficient and sensitive method of DNA silver staining in polyacrylamide gel. Electrop. 26(17):3333-3340 https://doi.org/10.1002/elps.200500163
  19. Womack, J. E., J. S. Johnson, E. K. Owens, C. E. Rexroad, J. Schlapfer and Y. P. Yang. 1997. A whole-genome radiation hybrid panel for bovine gene mapping. Mamm. Genome. 8(11):854-856 https://doi.org/10.1007/s003359900593
  20. Voelker, G. R., G. T. Bleck and M. B. Wheeler. 1997. Single-base polymorphisms within the 5' flanking region of the bovine $\alpha$-lactalbumin gene. J. Dairy Sci. 80:194-197 https://doi.org/10.3168/jds.S0022-0302(97)75927-7
  21. Vilotte, J. L., S. Soulier, J. C. Mercier, P. Gaye, D. Hue-Delahaie and J. P. Furet. 1987. Complete nucleotide sequence of bovine $\alpha$-lactalbumin gene: comparison with its rat counterpart. Biochimie. 69:609-620 https://doi.org/10.1016/0300-9084(87)90180-5
  22. Viitala, S. M., N. F. Schulman, D. J. de Koning, K. Elo, R. Kinos, A. Virta, J. Virta, A. Maki-Tanila and J. H. Vilkki. 2003. Quantitative trait loci affecting milk production traits in Finnish Ayrshire dairy cattle. 86:1828-1836 https://doi.org/10.3168/jds.S0022-0302(03)73769-2
  23. He, F., D. X. Sun, Y. Yu, Y. C. Wang and Y. Zhang. 2006. Association between SNPs within prolactin gene and milk performance traits in Holstein Dairy cattle. Asian-Aust. J. Anim. Sci. 19(10):1384-1389 https://doi.org/10.5713/ajas.2006.1384
  24. Threadgill, D. W. and J. E. Womack. 1990. Genomic analysis of the major bovine milk protein genes. Nucleic Acids Res. 18(23):6935-6942 https://doi.org/10.1093/nar/18.23.6935