DOI QR코드

DOI QR Code

Clenbuterol Inhibits SREBP-1c Expression by Activating CREB1

  • Zhou, Lei (Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Li, Yixing (Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Nie, Tao (Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Feng, Shengqiu (Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Yuan, Jihong (Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Chen, Huaping (Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Yang, Zaiqing (Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University)
  • Published : 2007.07.31

Abstract

As a $\beta_2$-adrenergic agonist, clenbuterol decreases body fat, but the molecular mechanism underlying this process is unclear. In the present study, we treated 293T and L-02 cells with clenbuterol and found that clenbuterol downregulates SREBP-1c expression and upregulates CREB1 expression. Considering SREBP-1c has the function of regulating the transcription of several lipogenic enzymes, we considered that the downregulation of SREBP-1c is responsible for body fat reduction by clenbuterol. Many previous studies have found that clenbuterol markedly increases intracellular cAMP levels, therefore, we also investigated whether CREB1 is involved in this process. The data from our experiments indicate that CREB1 overexpression inhibits SREBP-1c transcription, and that this action is antagonized by CREB2, a competitive inhibitor of CREB1. Furthermore, since PPARs are able to repress SREBP-1c transcription, we investigated whether clenbuterol and CREB1 function via a pathway involving PPAR activation. However, our results showed that clenbuterol or CREB1 overexpression suppressed PPARs transcription in 293T and L-02 cells, which suggested that they impair SREBP-1c expression in other ways.

Keywords

CREB;Insulin;PPARs;SREBP-1c

References

  1. Abel, T., Martin, K. C., Bartsch, D. and Kandel, E. R. (1998) Memory suppressor genes: inhibitory constraints on the storage of long-term memory. Science 279, 338-341. https://doi.org/10.1126/science.279.5349.338
  2. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  3. Brown, M. S. and Goldstein, J. L. (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331-340. https://doi.org/10.1016/S0092-8674(00)80213-5
  4. DeBose-Boyd, R. A., Ou, J., Goldstein, J. L. and Brown, M. S. (2001) Expression of sterol regulatory element-binding protein 1c (SREBP-1c) mRNA in rat hepatoma cells requires endogenous LXR ligands. Proc. Natl. Acad. Sci. USA 98, 1477-1482. https://doi.org/10.1073/pnas.98.4.1477
  5. Deng, X., Cagen, L. M., Wilcox, H. G., Park, E. A., Raghow, R. and Elam, M. B. (2002) Regulation of the rat SREBP-1c promoter in primary rat hepatocytes. Biochem. Biophys. Res. Commun. 290, 256-262. https://doi.org/10.1006/bbrc.2001.6148
  6. Gondret, F., Ferre, P. and Dugail, I. (2001) ADD-1/SREBP-1 is a major determinant of tissue differential lipogenic capacity in mammalian and avian species. J. Lipid Res. 42, 106-113.
  7. Hai, T. W., Liu, F., Coukos, W. J. and Green, M. R. (1989) Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes Dev. 3, 2083-2090. https://doi.org/10.1101/gad.3.12b.2083
  8. Herzig, S., Hedrick, S., Morantte, I., Koo, S. H., Galimi, F. and Montminy, M. (2003) CREB controls hepatic lipid metabolism through nuclear hormone receptor PPAR-gamma. Nature 426, 190-193. https://doi.org/10.1038/nature02110
  9. Horton, J. D., Goldstein, J. L. and Brown, M. S. (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109, 1125-1131. https://doi.org/10.1172/JCI0215593
  10. Ide, T., Shimano, H., Yahagi, N., Matsuzaka, T., Nakakuki, M., Yamamoto, T., Nakagawa, Y., Takahashi, A., Suzuki, H., Sone, H., Toyoshima, H., Fukamizu, A. and Yamada, N. (2004) SREBPs suppress IRS-2-mediated insulin signalling in the liver. Nat. Cell Biol. 6, 351-357. https://doi.org/10.1038/ncb1111
  11. Jhala, U. S., Canettieri, G., Screaton, R. A., Kulkarni, R. N., Krajewski, S., Reed, J., Walker, J., Lin, X., White, M. and Montminy, M. (2003) cAMP promotes pancreatic beta-cell survival via CREB-mediated induction of IRS2. Genes Dev. 17, 1575-1580. https://doi.org/10.1101/gad.1097103
  12. Karpinski, B. A., Morle, G. D., Huggenvik, J., Uhler, M. D. and Leiden, J. M. (1992) Molecular cloning of human CREB-2: an ATF/CREB transcription factor that can negatively regulate transcription from the cAMP response element. Proc. Natl. Acad. Sci. USA 89, 4820-4824. https://doi.org/10.1073/pnas.89.11.4820
  13. Kim, J. B., Spotts, G. D., Halvorsen, Y. D., Shih, H. M., Ellenberger, T., Towle, H. C. and Spiegelman, B. M. (1995) Dual DNA binding specificity of ADD1/SREBP1 controlled by a single amino acid in the basic helix-loop-helix domain. Mol. Cell. Biol. 15, 2582-2588. https://doi.org/10.1128/MCB.15.5.2582
  14. Mayr, B. and Montminy, M. (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat. Rev. Mol. Cell Biol. 2, 599-609. https://doi.org/10.1038/35085068
  15. Osborne, T. F. (2000) Sterol regulatory element-binding proteins (SREBPs): key regulators of nutritional homeostasis and insulin action. J. Biol. Chem. 275, 32379-32382. https://doi.org/10.1074/jbc.R000017200
  16. Repa, J. J., Liang, G., Ou, J., Bashmakov, Y., Lobaccaro, J. M., Shimomura, I., Shan, B., Brown, M. S., Goldstein, J. L. and Mangelsdorf, D. J. (2000) Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev. 14, 2819-2830. https://doi.org/10.1101/gad.844900
  17. Reusch, J. E., Colton, L. A. and Klemm, D. J. (2000) CREB activation induces adipogenesis in 3T3-L1 cells. Mol. Cell. Biol. 20, 1008-1020. https://doi.org/10.1128/MCB.20.3.1008-1020.2000
  18. Sambrook, J., and Russell, D. W. (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York, USA.
  19. Shimano, H., Horton, J. D., Shimomura, I., Hammer, R. E., Brown, M. S. and Goldstein, J. L. (1997) Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J. Clin. Invest. 99, 846-854. https://doi.org/10.1172/JCI119248
  20. Shimomura, I., Shimano, H., Horton, J. D., Goldstein, J. L. and Brown, M. S. (1997) Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells. J. Clin. Invest. 99, 838-845. https://doi.org/10.1172/JCI119247
  21. Silva, A. J., Kogan, J. H., Frankland, P. W. and Kida, S. (1998) CREB and memory. Annu. Rev. Neurosci. 21, 127-148. https://doi.org/10.1146/annurev.neuro.21.1.127
  22. Takahashi, A., Motomura, K., Kato, T., Yoshikawa, T., Nakagawa, Y., Yahagi, N., Sone, H., Suzuki, H., Toyoshima, H., Yamada, N. and Shimano, H. (2005) Transgenic mice overexpressing nuclear SREBP-1c in pancreatic beta-cells. Diabetes 54, 492-499. https://doi.org/10.2337/diabetes.54.2.492
  23. Wang, H., Maechler, P., Antinozzi, P. A., Herrero, L., Hagenfeldt-Johansson, K. A., Bjorklund, A. and Wollheim, C. B. (2003) The transcription factor SREBP-1c is instrumental in the development of beta-cell dysfunction. J. Biol. Chem. 278, 16622-16629. https://doi.org/10.1074/jbc.M212488200
  24. Yeh, H.-j., Chu, T.-h., and Shen, T.-w. (1980) Ultrastructure of Continuously Cultured Adult Human Liver Cell. Acta Biologiac Experimentalis Sinica 13, 361-364.
  25. Yellaturu, C. R., Deng, X., Cagen, L. M., Wilcox, H. G., Park, E. A., Raghow, R. and Elam, M. B. (2005) Posttranslational processing of SREBP-1 in rat hepatocytes is regulated by insulin and cAMP. Biochem. Biophys. Res. Commun. 332, 174-180. https://doi.org/10.1016/j.bbrc.2005.04.112
  26. Yokoyama, C., Wang, X., Briggs, M. R., Admon, A., Wu, J., Hua, X., Goldstein, J. L. and Brown, M. S. (1993) SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell 75, 187-197. https://doi.org/10.1016/0092-8674(93)90690-R
  27. Yoshikawa, T., Ide, T., Shimano, H., Yahagi, N., Amemiya-Kudo, M., Matsuzaka, T., Yatoh, S., Kitamine, T., Okazaki, H., Tamura, Y., Sekiya, M., Takahashi, A., Hasty, A. H., Sato, R., Sone, H., Osuga, J., Ishibashi, S. and Yamada, N. (2003) Cross-talk between peroxisome proliferator-activated receptor (PPAR) alpha and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. I. PPARs suppress sterol regulatory element binding protein-1c promoter through inhibition of LXR signaling. Mol. Endocrinol. 17, 1240-1254. https://doi.org/10.1210/me.2002-0190
  28. Zhou, L., Xia, T., Li, Y., Chen, X., Peng, Y. and Yang, Z. (2006) Transcriptional regulation of the resistin gene. Domest. Anim. Endocrinol. 30, 98-107. https://doi.org/10.1016/j.domaniend.2005.06.004

Cited by

  1. AMPK activation prevents excess nutrient-induced hepatic lipid accumulation by inhibiting mTORC1 signaling and endoplasmic reticulum stress response vol.1842, pp.9, 2014, https://doi.org/10.1016/j.bbadis.2014.07.002
  2. Central Activating Transcription Factor 4 (ATF4) Regulates Hepatic Insulin Resistance in Mice via S6K1 Signaling and the Vagus Nerve vol.62, pp.7, 2013, https://doi.org/10.2337/db12-1050
  3. Development of a Porcine cDNA Microarray: Analysis of Clenbuterol Responding Genes in Pig (Sus scrofa) Internal Organs vol.11, pp.11, 2012, https://doi.org/10.1016/S2095-3119(12)60193-2
  4. ATF4 deficiency protects mice from high-carbohydrate-diet-induced liver steatosis vol.438, pp.2, 2011, https://doi.org/10.1042/BJ20110263
  5. Single injection of the β2-adrenergic receptor agonist, clenbuterol, into newly hatched chicks alters abdominal fat pad mass in growing birds vol.211, 2015, https://doi.org/10.1016/j.ygcen.2014.12.002
  6. ATF4 regulates lipid metabolism and thermogenesis vol.20, pp.2, 2010, https://doi.org/10.1038/cr.2010.4
  7. SAFB1, an RBMX-binding protein, is a newly identified regulator of hepatic SREBP-1c gene vol.42, pp.4, 2009, https://doi.org/10.5483/BMBRep.2009.42.4.232
  8. ATF4 deficiency protects hepatocytes from oxidative stressviainhibiting CYP2E1 expression vol.18, pp.1, 2014, https://doi.org/10.1111/jcmm.12166
  9. homeostasis of isolated rat ventricular myocytes vol.295, pp.5, 2008, https://doi.org/10.1152/ajpheart.00258.2008