Preparation of Graphite Oxide and its Electrochemical Double Layer Capacitor's Performances using Non-Aqueous Electrolyte (TEABF4 & TEMABF4)

산화흑연의 제조 및 전해질(TEABF4 & TEMABF4)에 따른 전기이중층 커패시터의 특성

  • 양선혜 (한국전기연구원 전지연구그룹) ;
  • 김익준 (한국전기연구원 전지연구그룹) ;
  • 전민제 (한국전기연구원 전지연구그룹) ;
  • 문성인 (한국전기연구원 전지연구그룹) ;
  • 김현수 (한국전기연구원 전지연구그룹) ;
  • 안계혁 (성균관대학교) ;
  • 이윤표 (성균관대학교) ;
  • 이영희 (성균관대학교)
  • Received : 2007.04.05
  • Accepted : 2007.05.15
  • Published : 2007.06.10

Abstract

The oxidation treatment of needle cokes with 70 wt% of nitric acid and sodium chlorate ($NaClO_3$) was attempted to achieve an electrochemically active material with a large capacitance. The structure of needle cokes was changed to graphite oxide after oxidation treatment of needle cokes with acidic solution having the composition ratio, $NaClO_3$/needle cokes, of 7.5, and the inter-layer distance of the oxidized needle cokes was extended to $6.9{\AA}$with increasing oxygen content. On the other hand, the electrochemical performance of oxidized needle cokes as a polarized electrode for an Electric Double Layer Capacitor (EDLC) was examined with an electrolyte of 1.2 M $TEABF_4$ (tetraethylammonium tetrafluoroborate) and $TEABF_4$ (triethylmethylammonium tetrafluoroborate) in acetonitrile. The capacitor cell using 1.2 M $TEABF_4$/acetonitrile has exhibited smaller electric resistance of $0.05{\Omega}$, and larger capacitance per weight and volume of 32.0 F/g and 25.5 F/mL at the two-electrode system in the potential range 0~2.5 V than that of the capacitor cell using $TEABF_4$. The observed electrochemical performance was discussed with the correlation between the inter-layer distance in graphite oxide structure and the anionic size of electrolyte.

Keywords

graphite oxide;inter-layer spacing;capacitance;non-aqueous electrolyte;EDLC

References

  1. B. E. Conway, J. Electrochem. Soc., 138, 1539 (1991) https://doi.org/10.1149/1.2085829
  2. I. J. Kim, S. Y. Lee, C. H. Doh, and S. I. Moon, The Korean Institute of Electrical and Electronic Material Engineers, 17, 107 (2004) https://doi.org/10.4313/JKEM.2004.17.1.107
  3. T. Morimoto, K. Hiratsuka, Y. Sanada, and K. Kurihara, Mat. Res. Soc. Proc., San Francisco, CA, 397 (1995)
  4. M. Takeuchi, T. Maruyama, K. Koike, A. Mogami, T. Oyama, and H. Kobayashi, Electrochem., 69, 487 (2001)
  5. S. Mitari, S. I. Lee, K. Saito, S. H. Yoon, Y. Korai, and I. Mochida, Carbon, 43, 2960 (2005)
  6. M. Endo, Y. J. KIM, H. Ohta, K. Ishi, T. Inoue, T. Hayashi, Y. Nishimura, T. Maeda, and M. S. Dresselhaus, Carbon, 40, 2613 (2002) https://doi.org/10.1016/S0008-6223(02)00191-4
  7. G. G. Amatucci, F. Badway, A. D. Pasquir, and T. Zheng, J. Electrochem. Soc., 148, A930 (2001) https://doi.org/10.1149/1.1383553
  8. R. Bissessur, P. K. Y. Liu, and S. F. Scully, Synth. Met., 156, 1023 (2006) https://doi.org/10.1016/j.synthmet.2006.06.024
  9. T. Nakajima, A. Mabuchi, and R. Hagiwara, Carbon, 26, 357 (1988) https://doi.org/10.1016/0008-6223(88)90227-8
  10. I. J. Kim, M. J. Jeon, S. H. Yang, H. S. Kim, S. I. Moon, and D. H. Oh, J. Korean Ind. Eng. Chem., 19, 849 (2006)
  11. S. S. Barton, J. Coll. Int. Sci., 179, 449 (1996)
  12. M. Arulepp, L. Permann, J. Leis, A. Perkson, K. Rumma, A. Janes, and E. Lust, J. Power Source, 133, 320 (2004) https://doi.org/10.1016/j.jpowsour.2004.03.026
  13. S. Sarangapani, B. V. Tilak, and C. P. Chen, J. Electrochem. Soc., 143, 3791 (1996)
  14. I. J. Kim, S. Y. Lee, and S. I. Moon, The Korean Institute of Electrical and Electronic Material Engineers, 17, 1079 (2004) https://doi.org/10.4313/JKEM.2004.17.10.1079
  15. B. E. Conway, Proceedings of The 4th International Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Deerfield Beach, FL, December 12 (1994)