Conversion of C2C12 Myoblast into Adipoblast with Thiazolidinediones - A Possible Basis for Intramuscular Fat Generation in Meat Animals

  • Singh, N.K. (Product and Utility Division, National Livestock Research Institute) ;
  • Chae, H.S. (Product and Utility Division, National Livestock Research Institute) ;
  • Hwang, I.H. (Department of Animal Resources and Biotechnology, Chonbuk National University) ;
  • Yoo, Y.M. (Product and Utility Division, National Livestock Research Institute) ;
  • Ahn, C.N. (Product and Utility Division, National Livestock Research Institute) ;
  • Lee, H.J. (Nutrition and physiology, National Livestock Research Institute) ;
  • Park, H.J. (Nutrition and physiology, National Livestock Research Institute) ;
  • Chung, H.Y. (Animal Genomics and Bioinformatics Division, National Livestock Research Institute)
  • Received : 2006.06.12
  • Accepted : 2006.10.09
  • Published : 2007.03.01


Thiazolidinediones (TZDs) act as potent activators of the adipose differentiation program in established preadipose cell lines. TZD's have also been investigated in diabetic patients and reported to act as PPAR-${\gamma}$ ligands. In this report, the effects of TZDs on the differentiation pathway of myoblasts have been investigated. C2C12 mouse myoblasts were grown in Dulbecco's Modified Eagles medium for 4-5 days until they reached almost 100% confluency. Post-confluent cells (day 0) were further exposed to adipogenic induction medium along with TZDs for 48 hours. Thereafter, cells were exposed only to TZDs every 48 h until day 10. The control was provided with differentiation medium without any treatment. Alterations in the cells during the differentiation programme were analyzed on the basis of fusion index, oil-red-o staining, adipocyte index, adipocyte stain uptake measurement, immuno-histochemistry and western blotting. Exposure of C2C12 mouse myoblasts to TZDs prevented the expression of myosin heavy chain with parallel increase in the expression of C/EBP-${\alpha}$ and PPAR-${\gamma}$ and acquisition of adipocyte morphology, thus abolishing the formation of multinucleated myotubes. TZDs exert their adipogenic effects only in non-terminally differentiated myoblasts; myotubes were insensitive to the compound. Continuous exposure (at least 4-5 doses) to inducers after the growth arrest was essential to provide a sustained environment to the cells converting to fully matured adipoctyes. The results indicate that TZDs specifically converted the differentiation pathway of myoblasts into that of adipoblasts.


Supported by : National Livestock Research Institute, RDA


  1. Albrektsen, T., K. S. Frederiksen, W. E. Holmes, E. Boel, K. Taylor and J. Fleckner. 2002. Novel genes regulated by the insulin sensitzer rosiglitazone during adipocyte differentiation. Diabetes 51:1042-1051.
  2. Fedoroff, S. and C. Hall. 1979. Effect of horse serum on neural cell differentiation in tissue culture. In vitro. 15(8):641-648.
  3. Freytag, S. O., D. L. Paielli and J. D. Gilbert. 1994. Ectopic expression of the CCAAT/enhancer binding protein ${\alpha}$ promotes the adipogenic program in a variety of mouse fibroblastic cells. Genes. Dev. 8:1654-1663
  4. Hu, E., P. Tontonoz and B. M. Spiegelman. 1995. Trandifferentiation of myoblasts by the adipogenic transcription factor PPAR-gamma and $C/EBP-{\alpha}$. Proc. Natl. Acad. Sci. USA. 92:9856-60.
  5. Le Douarin, N. M. and C. Ziller. 1993. Plasticity in neural crest cell differentiation. Curr. Opin. Cell Biol. 5(6):1036-1043.
  6. Mc Neil, M. 2005. Adiopocyte staining with Oil-Red-O. Pennington lab, Molecular Endocrinology, Pennington Biomedical Research Centre. Baton Rouge, La.
  7. Weintraub, H., S. J. Tapscott, R. L. Davis, M. J. Thayer, M. A. Adam, A. B. Lassar and A. D. Miller. 1989. Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc. Natl. Acad. Sci. USA. 86(14):5434-5438.
  8. Yeh, W. C., Z. Cao, M. Classon and S. L. Mcknight. 1995. Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP-family of leucine zipper proteins. Genes. Dev. 9:168-181.
  9. Mie, M., H. Ohgushi, Y. Yanagida, T. Haruyama, E. Kobatake and M. Aizawa. 2000. Osteogenesis coordinated in C3H10T1/2 cells by adipogenesis-dependent BMP-2 expression system. Tissue Eng. 6(1):9-18.
  10. Cha, B. S., T. P. Ciaraldi, L. Carter, S. E. Nikoulina, S. Mudaliar, R. Mukherjee, J. R. Paterniti Jr. and R. R. Henry. 2001. Peroxisome proliferator activated receptor $(PPAR){\gamma}$ and $retinoid{\times}receptor$ ($R{\times}R$) agonists have complementary effects on glucose and lipid metabolism in human skeletal muscle. Diabetologica 44:444-452.
  11. Tontonoz, P., E. Hu and B. M. Spiegelman. 1994b. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipidactivated transcription factor. Cell 79:1147-1156.
  12. Pollard, J. W. and J. M. Walker. 1989. Adipocytes: Animal Cell Culture. Methods in Molecular Biology. Edn 5:197-207.
  13. Reusch, J. E., C. A. Colton and D. J. Klemm. 2000. CREB activation induces adipogenesis in 3T3-L1 cells. Mol. Cell Biol. 20:1008-1020.
  14. Wu, Z., Y. Xie, N. L. Buchner and S. R. Farmer. 1996. Induction of peroxisome proliferator activated receptor ${\gamma}$ during the conversion of 3T3 fibroblasts into adipocytes is mediated by $C/EBP{\beta}$, $C/EBP{\delta}$, and glucocorticoids. Mol. Cell Biol. 16:4128-4136.
  15. Tontonoz, P., E. Hu, J. Devine, E. G. Beale and B. M. Spiegelman. 1995. $PPAR{\gamma}2$ regulates adipose expression of the phosphoenolpyruvate carboxykinase gene. Mol. Cell. Biol. 15:351-357.
  16. Eguchi, G. and R. Kodama. 1993. Transdifferentiation. Curr. Opin. Cell. Biol. 5(6):1023-1028.
  17. Katagiri T., A. Yamaguchi, M. Komaki, E. Abe, N. Takahashi, T. Ikeda, V. Rosen, J. M. Wozney, A. Fujisawa-Sehara and T. Suda. 1994. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J. Cell Biol. 127:1755-1766.
  18. Michal, J., Z. Xiang, M. Davenport, M. Hayek, M. V. Dodson and K. M. Byrne. 2002. Isolation and characterization of canine satellite cells. In vitro. Cell Dev. Biol-Anim. 38(8):467-480.<0467:IACOCS>2.0.CO;2
  19. Way, J. M., W. W. Harrington, K. K. Brown, W. K. Gottschalk, S. S. Sundseth, T. A. Mansfield, R. K. Ramachandran, T. M. Wilson and S. A. Kliewer. 2001. Comprehensive messenger ribonucleic acid profiling reveals that peroxisome proliferatoractivated receptor ${\gamma}$ activation has coordinate effects on gene expression in multiple insulin-sensitive tissues. Endocrinol. 142:1269-1277.
  20. Yu, J. G., S. Javorschi, A. L. Hevener, Y. T. Kruszynska, R. A. Norman, M. Sinha and J. M. Olefsky. 2002. The effect of thiazolidenediones on plasma adiponectin levels in normal, obese, and type 2 diabetic subjects. Diabetes 51:2968-2974.
  21. Novakofski, J. 2004. Adipogenic: Usefulness of in vitro and in vivo experimental models. J. Anim. Sci. 82:905-915.
  22. Asakura, A., M. A. Rudnicki and M. Komaki. 2001. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differen. 68(4-5):1432-436.
  23. Blau, H. M. 1992. Differentiation requires continuous active control. Annu. Rev. Biochem. 61:1213-1230.
  24. Tontonoz, P., E. Hu, R. A. Graves, A. I. Budavari and B. M. Spiegelman. 1994a. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev. 8:1224-1234.
  25. Wu, Z., Y. Xie, N. L. Buchner and S. R. Farmer. 1995. Conditional ectopic expression of $C/EBP-{\beta}$ in NIH-3T3 cells induces $PPAR-{\gamma}$ and stimulates adipogenesis. Genes Dev. 9:2350-2363.
  26. Rosen, E. D., C. J. Walkey, P. Puigserver and B. M. Spiegelman. 2006. Transcriptional regulation of adipogenesis. Genes Dev. 14:1293-1307.
  27. Li, W. C., W. Y. Yu, J. M. Quinlan, Z. D. Burke and D. Tosh. 2005. The molecular basis of transdifferentiation. J. Cell Mol. Med. 9(3):569-582.
  28. Seale, P., L. A. Sabourin, A. G. Gabardo, A. Mansouri, P. Gruss and M. A. Rudnicki. 2000. Pax-7 is required for the specification of myogenic satellite cells. Cell. 102:777-786.
  29. Baron, M. H. 1993. Reversibility of the differentiated state in somatic cells. Curr. Opin. Cell Biol. 5:1050-1056.
  30. Erding, H. U., P. Tontonoz and B. M. Spiegelman. 1995. Transdifferentiation of myoblasts by the adipogenic transcription factor $PPAR{\gamma}$ and $C/EBP{\alpha}$. Proc. Natl. Acad. Sci. USA. 92:9856-9860
  31. Tonelli, J. W. Li, P. Kishore, U. B. Pajvani, E. Kwon, C. Weaver, P. E. Scherer and M. Hawkins. 2004. Mechanisms of early insulin-sensitizing effects of thiazolidenediones in type-2 diabetes. Diabetes 53:1621-1629.
  32. Green, H. and O. Kehinde. 1974. Sublines of mouse 3T3 cells that accumulate lipid. Cell 1:113-116.
  33. Malerod, L., M. Sporstol, L. K. Juvet, A. Mousavi, T. Gjoen and T. Berg. 2003. Hepatic scavenger receptor class B, type I is stimulated by peroxisome proliferator activated receptor ${\gamma}$ and hepatocyte nuclear factor $4{\alpha}$. Biochem. Biophys. Res. Commun. 305:557-565.
  34. Iwaki, M., M. Matsuda, N. Maeda, T. Funahashi, Y. Matsuzawa, M. Makishim and I. Shimomura. 2003. Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear recrptors. Diabetes 52:1655-1663.
  35. Levert, K. L., G. L. Waldrop and J. M. Stephens. 2002. A biotin analog inhibits acetyl-CoA carboxylase activity and adipogenesis. J. Biol. Chem. 277(19):16347-16350.
  36. Dodson, M. V. and B. A. Mathison. 1988. Comparison of ovine and rat muscle-derived satellite cells: response to insulin. Tis. Cell. 20:909-918.
  37. Hong, Y. H., Y. Nishimura, D. Hishikawa, H. Tsuzuki, H. Miyahara, C. Gotoh, K. C. Choi, D. D. Feng, C. Chen, H. G. Lee, K. Kazuo, S. G. Roh and S. Sasaki. 2006. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinol. 146(12):5092-5099.

Cited by

  1. Recent developments in lipid metabolism in ruminants – the role of fat in maintaining animal health and performance vol.54, pp.10, 2014,