Enantioselective Phenolic Kinetic Resolution of Epoxides Catalyzed by New Chiral Salen Complexes

새로운 구조의 키랄 살렌 촉매상에서 페놀유도체에 의한 에폭사이드의 광학선택적 개환반응

  • Rahul, B. Kawthekar (The School of Chemical Engineering and Biotechnology, Inha University) ;
  • Lee, Kwang-Yeon (The School of Chemical Engineering and Biotechnology, Inha University) ;
  • Kim, Geon-Joong (The School of Chemical Engineering and Biotechnology, Inha University)
  • Received : 2007.09.19
  • Accepted : 2007.10.16
  • Published : 2007.12.10

Abstract

New chiral Co-salen complexes with one $C_3-^tBu$ group in the structure have been synthesized and applied as a chiral catalyst. A dimeric chiral salen having aluminum group metal salts such as $AlCl_3$ displayed very high catalytic reactivity and enantioselectivity for the asymmetric ring opening of epoxides to synthesize optically pure ${\alpha}$-aryloxy alcohols via phenolic kinetic resolution. The salen complexes immobilized on the inorganic support were also used as effective catalysts in that reaction. The identity of metal salts in the new chiral salen complex has proved to be important in the enantioselective reactions.

Acknowledgement

Supported by : Inha University

References

  1. J. M. Ready and E. N. Jacobsen, J. Am. Chem. Soc., 121, 6086 (1999)
  2. J. M. Ready and E. N. Jacobsen: J. Am. Chem. Soc., 123, 2687 (2001) https://doi.org/10.1021/ja005867b
  3. M. Shibasaki and N. Yoshikawa, Chem. Rev., 102, 2187 (2002) https://doi.org/10.1021/cr010297z
  4. N. S. Josephsohn, K. W. Kuntz, M. L. Snapper, and A. H. Hoveyda, J. Am. Chem. Soc., 123, 1159 (2001) https://doi.org/10.1021/ja001108h
  5. A. H. Mermerian and G. C. Fu, J. Am. Chem. Soc., 125, 4050 (2003) https://doi.org/10.1021/ja028554k
  6. M. Yang, C. Zhu, F. Yuan, Y. Huang, and Y. Pan, Org. Lett., 7, 1927 (2005) https://doi.org/10.1021/ol0503034
  7. M. Kwon and G.-J. Kim, Catalysis Today, 87, 145 (2003)
  8. G.-J. Kim and J. Shin, Tetrahedron Letters, 40, 6827 (1999)
  9. S. D. Bose: Bioorg. Med. Chem., 13, 627 (2005) https://doi.org/10.1016/j.bmc.2004.10.057
  10. D. E. White and E. N. Jacobson, Tetrahedron: Asymmetry, 14, 3633 (2003) https://doi.org/10.1016/j.tetasy.2003.09.024
  11. R. G. Konsler, J. Karl, and E. N. Jacobsen, J. Am. Chem. Soc., 120, 10780 (1998)
  12. S. Peukert and E. N. Jacobsen, Org. Lett.,; 1, 1245 (1999)
  13. J. M. Ready and E. N. Jacobsen, Angew Chem. Int. Ed., 41, 1374 (2002) https://doi.org/10.1002/1521-3773(20020415)41:8<1374::AID-ANIE1374>3.0.CO;2-8
  14. R. Breinbauer and E. N. Jacobsen, Angew Chem. Int. Ed., 39, 3604 (2000) https://doi.org/10.1002/1521-3773(20001016)39:20<3604::AID-ANIE3604>3.0.CO;2-9
  15. S. S. Thakur, W. Li, S.-J. Kim, and G.-J. Kim, Tetrahedron Lett., 46, 2263 (2005)
  16. S. S. Thakur, W. Li, C.-K. Shin, and G.-J. Kim, Chirality, 18, 37 (2006)
  17. G. Bartoli, M. Bosco, A. Carlone, M. Locatelli, M. Massaccesi, P. Melchiorre, and L. Sambri, Org. Lett., 6, 2173 (2004) https://doi.org/10.1021/ol049372t
  18. G. Bartoli, M. Bosco, A. Carlone, M. Locatelli, P. Melchiorre, and L. Sambri, Org. Lett., 6, 3973 (2004) https://doi.org/10.1021/ol048322l
  19. D. Atwood and M. J. Harvey, Chem. Rev., 101, 37 (2001) https://doi.org/10.1021/cr990008v
  20. D. Atwood and P. Wei, Chem.Commun., 1427 (1997)
  21. E. Solari, F. Corazza, C. Floriani, A. Chiesi-Villa, and C. Guastini, J. Chem. Soc. Dalton Trans., 1345 (1990)
  22. S. J. Gruber, C. M. Harris, and E. Sinn, Inorg. Chem., 2, 268 (1968)
  23. R. H. Holm, W. Everett, and A. Chakravorty, Prog. Inorg. Chem., 7, 83 (1966) https://doi.org/10.1002/9780470166086.ch3
  24. H. Aoi, M. Ishimori, and T. Tsuruta, Bull. Chem. Soc. Jpn., 48, 1897 (1975) https://doi.org/10.1246/bcsj.48.1897