DOI QR코드

DOI QR Code

Molecular Characterization and Chromosomal Mapping of the Porcine AMP-activated Protein Kinase ${\alpha}2$ (PRKAA2) Gene

  • Lee, Hae-Young (Division of Animal Genomics and Bioinformatics, National Livestock Research Institute, RDA) ;
  • Choi, Bong-Hwan (Division of Animal Genomics and Bioinformatics, National Livestock Research Institute, RDA) ;
  • Lee, Jung-Sim (Division of Animal Genomics and Bioinformatics, National Livestock Research Institute, RDA) ;
  • Jang, Gul-Won (Division of Animal Genomics and Bioinformatics, National Livestock Research Institute, RDA) ;
  • Lee, Kyung-Tai (Division of Animal Genomics and Bioinformatics, National Livestock Research Institute, RDA) ;
  • Chung, Ho-Young (Division of Animal Genomics and Bioinformatics, National Livestock Research Institute, RDA) ;
  • Jeon, Jin-Tea (Gyeongsang National University) ;
  • Cho, Byung-Wook (Department of Animal Science, Busan National University) ;
  • Lee, Jun-Heon (Research Center for Transgenic Cloned Pigs, Division of Animal science and resources, Chungnam National University) ;
  • Kim, Tae-Hun (Division of Animal Genomics and Bioinformatics, National Livestock Research Institute, RDA)
  • Received : 2006.02.28
  • Accepted : 2006.10.25
  • Published : 2007.05.01

Abstract

AMP-activated protein kinase alpha 2 (PRKAA2) plays a key role in regulation of fatty acid and cholesterol metabolism. This study investigated the porcine PRKAA2 gene as a positional candidate for intramuscular fat and backfat thickness traits in pig chromosome 6. A partial fragment of the porcine PRKAA2 gene, amplified by PCR, contained a putative intron 3 including a part of exon 3 and 4, comparable with that of human PRKAA2 gene. Within the fragment, several single nucleotide polymorphisms were identified using multiple sequence alignments. Of these, TaqI restriction enzyme polymorphism was used for genotyping various pig breeds including Korean reference family. Using linkage and physical mapping, the porcine PRKAA2 gene was mapped in the region between microsatellite markers SW1881 and SW1680 on chromosome 6. Allele frequencies were quite different among pig breeds. The full length cDNA of the porcine PRKAA2 (2,145 bp) obtained by RACE containing 1,656 bp open reading frame of deduced 552 amino acids, had sequence identities with PRKAA2 of human (98.2%), rat (97.8%), and mouse (97.5%). These results suggested that the porcine PRKAA2 is a positional candidate gene for fat deposition trait at near telomeric region of the long arm of SSC 6.

Keywords

PRKAA2;Mapping;Candidate Gene;Pig

Acknowledgement

Supported by : National Livestock Research Institute

References

  1. Beri, R. K., A. E. Marley, C. G. See, W. F. Sopwith, K. Aguan, D. Carling, J. Scott and F. Carey. 1994. Molecular cloning, expression and chromosomal localisation of human AMPactivated protein kinase. FEBS Lett 356:117-121. https://doi.org/10.1016/0014-5793(94)01247-4
  2. Friedman, J. M. and J. Halaas. 1998. Leptin and the regulation of body weight in mammals. Nature 395:763-770. https://doi.org/10.1038/27376
  3. Gao G., J. Widmer, D. Stapleton, T. Teh, T. Cox, B. E. Kemp and L. A. Witters. 1995. Catalytic subunits of the porcine and rat 5'- AMP-activated protein kinase are members of the SNF1 protein kinase family. Biochim. Biophys Acta. 1266:73-82. https://doi.org/10.1016/0167-4889(94)00222-Z
  4. Goureau, A., M. Yerle, A. Schmitz, J. Riquet, D. Milan, P. Pinton, G. Frelat and J. Gellin. 1996. Human and porcine correspondence of chromosome segments using bidirectional chromosome painting. Genom. 36:252-262. https://doi.org/10.1006/geno.1996.0460
  5. Kim, K. S., N. Larsen, T. Short, G. Plastow and M. F. Rothschild. 2000. A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed intake traits. Mamm. Genome. 11:131-135. https://doi.org/10.1007/s003350010025
  6. Le Roy, P., J. M. Elsen, J. C. Caritez, A. Talmant, H. Juin, P. Sellier, and G. Monin. 2000. Comparison between the three porcine RN genotypes for growth, carcass composition and meat quality traits. Genet. Sel. Evol. 32:165-186. https://doi.org/10.1186/1297-9686-32-2-165
  7. Milan, D., J. T. Jeon, C. Looft, V. Amarger, A. Robic, M. Thelander, C. Rogel-Gaillard, S. Paul, N. Iannuccelli, L. Rask, H. Ronne, K. Lundstrom, N. Reinsch, J. Gellin, E. Kalm, P. L. Roy, P. Chardon and L. Andersson. 2000. A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Sci. 288:1248-1251 https://doi.org/10.1126/science.288.5469.1248
  8. Paszek, A. A., P. J. Wilkie, G. H. Flickinger, G. A. Rohrer, L. J. Alexander, C. W. Beattie and L. B. Schook. 1999. Interval mapping of growth in divergent swine cross. Mamm. Genome. 10:117-122. https://doi.org/10.1007/s003359900955
  9. Rohrer, G. A. and J. Keele. 1998. Identification of quantitative trait loci affecting carcass composition in swine I. Fat deposition traits. J. Anim. Sci. 76:2247-2254. https://doi.org/10.2527/1998.7692247x
  10. Viollet, B., F. Andreelli, B. Jorgensent, C. Perrin, D. Flamez, J. Mu, J. F. P. Wojtaszewski, F. C. Schuit, M. Birnbaum, E. Richter, R. Burcelin and S. Vaulont. 2003. Physiological role of AMPactivated protein kinase (AMPK): insights from knockout mouse models. Biochemical Society Transactions 31:216-219. https://doi.org/10.1042/BST0310216
  11. Carling, D., K. Aguan, A. Woods, A. J. Verhoeven, R. K. Beri, C. H. Brennan, C. Sidebottom, M. D. Davison and J. Scott. 1994. Mammalian AMP-activated protein kinase is homologous to yeast and plant protein kinases involved in the regulation of carbon metabolism. J. Biol. Chem. 269:11442-11448.
  12. Green, P., K. Falls and S. Crooks. 1990. Documentation for CRIMAP, version 2.4. Washington Univ. School of Medicine, St. Louis, MO.
  13. Minokoshi, Y., Y. B. Kim, O. D. Peroni, L. G. D. Fryer, D. Carling and B. B. Kahn. 2002. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415:339-343. https://doi.org/10.1038/415339a
  14. Andersson, L., C. S. Haley, H. Ellegren, S. A. Knott, M. Johansson, K. Andersson, L. Andersson-Eklund, I. Edfors-Lilja, M. Fredholm, I. Hansson, J. Hakansson and K. Lundstrom. 1994. Genetic mapping of quantitative trait loci for growth and fatness in pigs. Sci. 263:1771-1774. https://doi.org/10.1126/science.8134840
  15. Hardie, D. G. and Hawley SA. 2001. AMP-activated protein kinase: the energy charge hypothesis revisited. Bioessays. 23:1112-1119. https://doi.org/10.1002/bies.10009
  16. Van Laere, A. S., M. Nguyen, M. Braunschweig, C. Nezer, C. Collette, L. Moreau, A. L. Archibald, C. S. Haley, N. Buys, M. Tally, G. Andersson, M. Georges and L. Andersson. 2003. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 425:832-836. https://doi.org/10.1038/nature02064
  17. Yerle, M., G. Echard, A. Robic, A. Mairal, C. Dubut-Fontana, J. Riquet, P. Pinton, D. Milan, Y. Lahbib-Mansais and J. Gellin. 1996. A somatic cell hybrid panel for pig regional gene mapping characterized by molecular cytogenetics. Cytogenet. Cell Genet. 73:194-202. https://doi.org/10.1159/000134338
  18. Rothschild, M. F. and G. S. Plastow. 1999. Advances in pig genomics and industry applications. AgBiotechNet 10:1-8.
  19. Yerle, M., P. Pinton, A. Robic, A. Alfonso, Y. Palvadaeu, C. Delcro, R. Hawken, L. Alexander, C. Beauti, L. Schook, D. Milan and J. Gellin. 1998. Construction of whole-genome radiation hybrid panel for high-resolution gene mapping in pigs. Cytogenet. Cell Genet. 82:182-188. https://doi.org/10.1159/000015095
  20. Aguan, K., J. Scott, C. G. See and N. H. Sarkar. 1994. Characterization and chromosomal localization of the human homologue of a rat AMP-activated protein kinase-encoding gene: a major regulator of lipid metabolism in mammals. Gene. 149:345-350. https://doi.org/10.1016/0378-1119(94)90174-0
  21. De Koning, D. J., A. P. Rattink, B. Harlizius, M. A. M. Groenen, E. W. Brascamp and J. A. M. van Arendonk. 2000. Detection and characterization of quantitative trait loci for growth and reproduction traits in pigs. Livestock Production Science 72: 185-198.
  22. Gerbens, F., D. J. de Koning, F. L. Harders, T. H. Meuwissen, L. L. Janss, M. A. Groenen, J. H. Veerkamp, J. A. Van Arendonk and M. F. te Pas. 2000. The effect of adipocyte and heart fatty acidbinding protein genes on intramuscular fat and backfat content in Meishan crossbred pigs. J. Anim. Sci. 78:552-559. https://doi.org/10.2527/2000.783552x
  23. Grindflek, E., J. Szyda, Z. Liu and S. Lien. 2001. Detection of quantitative trait loci for meat quality in a commercial slaughter pig cross. Mamm. Genome. 12:299-304. https://doi.org/10.1007/s003350010278
  24. Bidanel, J. P., D. Milan, N. Iannuccelli, Y. Amigues, M. Y. Boscher, F. Bourgeois, J. C. Caritez, J. Gruand, P. L. Roy, H. Lagant, R. Quintanilla, C. Renard, J. Gellin, L. Ollivier and C. Chevalet. 2001. Detection of quantitative trait loci for growth and fatness in pigs. Genet. Sel. Evol. 33:289-309. https://doi.org/10.1186/1297-9686-33-3-289
  25. De Koning, D. J., L. L. G. Janss, A. P. Rattink, P. A. M. van Oers, B. J. de Vries, M. A. M. Groenen, J. J. der Poel, P. N. de Groot, E. W. Brascamp and van Arendonk, J. A. M. 1999. Detection of quantitative trait loci for back fat thickness and intramuscular fat content in Pigs (Sus scrofa). Genet. 152:1679-1690.
  26. Hawken, R. J., J. Murtaugh, G. H. Flickinger, M. Yerle, A. Robic, D. Milan, J. Gellin, C. W. Beattie, L. B. Schook and L. J. Alexander. 1999. A first-generation porcine whole genome radiation hybrid map. Mamm. Genome. 10:824-830. https://doi.org/10.1007/s003359901097
  27. McKay, S. D., S. N. White, S. R. Kata, R. Loan and J. E. Womack. 2003. The bovine 5' AMPK gene family: mapping and single nucleotide polymorphism detection. Mamm. Genome. 14:853-858. https://doi.org/10.1007/s00335-003-2276-x
  28. Malek, M., J. C. M. Dekkers, H. K. Lee, T. Baas and M. F. Rothschild. 2001. A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. I. Growth and body composition. Mamm. Genome. 12:630-636. https://doi.org/10.1007/s003350020018
  29. Muoio, D. M., G. L. Dohm, F. T. Fiedorek, Jr., E. B. Tapscott, R. A. Coleman and G. L. Dohn. 1997. Leptin directly alters lipid partitioning in skeletal muscle. Diabetes 46:1360-1363. https://doi.org/10.2337/diabetes.46.8.1360
  30. Hardie, D. G., D. Carling and M. Carlson. 1998. The AMPactivated/ SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell. Annu. Rev. Biochem. 67:821-855. https://doi.org/10.1146/annurev.biochem.67.1.821
  31. Knott, S. A., L. Marklund, C. S. Haley, K. Andersson, W. Davies, H. Ellegren, M. Fredholm, I. Hansson, B. Hoyheim, K. Lundstrom, M. Moller, M., and Andersson, L.1998. Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs. Genetics. 149:1069-1080.
  32. Fujii, J., K. Otsu, F. Zorzto, S. de Leon, V. K. Khanna, V. K., Weiler, J. E., P. J. O'Brien and D. H. MacLennan. 1991. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Sci. 253:448-451. https://doi.org/10.1126/science.1862346
  33. Gerbens, F., A. J. van Erp, F. L. Harders, F. L., Verburg, F. J., Meuwissen, T. H., Veerkamp, J. H., and te Pas, M. F. 1999. Effect of genetic variants of the heart fatty acid-binding protein gene on intramuscular fat and performance traits in pigs. J. Anim. Sci. 77:846-852. https://doi.org/10.2527/1999.774846x
  34. Ovilo, C., M. Perez-Encisom, C. Barragan, A. Clop, C. Rodriguez, M. A. Oliver, M. A. Toro and J. L. Noguera. 2000. A QTL for intramuscular fat and backfat thickness is located on porcine chromosome 6. Mamm Genome 11:344-346. https://doi.org/10.1007/s003350010065