Identification of Critical Residues for Plasminogen Binding by the αX I-domain of the β2 integrin, αXβ2

  • Gang, Jongyun (Divisions of Science Education and Biology, Research Institute of Life Sciences, Kangwon National University) ;
  • Choi, Jeongsuk (Divisions of Science Education and Biology, Research Institute of Life Sciences, Kangwon National University) ;
  • Lee, Joo Hee (Divisions of Science Education and Biology, Research Institute of Life Sciences, Kangwon National University) ;
  • Nham, Sang-Uk (Divisions of Science Education and Biology, Research Institute of Life Sciences, Kangwon National University)
  • 투고 : 2007.04.05
  • 심사 : 2007.05.23
  • 발행 : 2007.10.31

초록

The ${\beta}2$ integrins on leukocytes play important roles in cell adhesion, migration and phagocytosis. One of the ${\beta}2$ integrins, ${\alpha}X{\beta}2$ (CD11c/CD18), is known to bind ligands such as fibrinogen, Thy-1 and iC3b, but its function is not well characterized. To understand its biological roles, we attempted to identify novel ligands. The functional moiety of ${\alpha}X{\beta}2$, the ${\alpha}X$ I-domain, was found to bind plasminogen, the zymogen of plasmin, with moderate affinity ($1.92{\times}10^{-6}M$) in the presence of $Mg^{2+}$ or $Mn^{2+}$. The ${\beta}D-{\alpha}5$ loop of the ${\alpha}X$ I-domain proved to be responsible for binding, and lysine residues ($Lys^{242}$, $Lys^{243}$) in the loop were the most important for recognizing plasminogen. An excess amount of the lysine analog, 6-aminohexanoic acid, inhibited ${\alpha}X$ I-domain binding to plasminogen, indicating that binding is lysine-dependent. The results of this study indicate that leukocytes regulate plasminogen activation, and consequently plasmin activities, through an interaction with ${\alpha}X{\beta}2$ integrin.

키워드

${\alpha}X{\beta}2$;${\beta}2$ Integrin;Binding;I-Domain;Plasminogen/Plasmin

과제정보

연구 과제 주관 기관 : Kangwon National University

참고문헌

  1. Arnaout, M. A., Mahalingam, B., and Xiong, J. P. (2005) Integrin structure, allostery, and bidirectional signaling. Annu. Rev. Cell Dev. Biol. 21, 381−410
  2. Bilsland, C. A., Diamond, M. S., and Springer, T. A. (1994) The leukocyte integrin p150,95 (CD11c/CD18) as a receptor for iC3b. Activation by a heterologous ${beta}$ subunit and localization of a ligand recognition site to the I-domain. J. Immunol. 152, 4582−4589
  3. Choi, J., Leyton, L., and Nham, S-U. (2005) Characterization of ${\alpha}X$ I-domain binding to Thy-1. Biochem. Biophy. Res. Commun. 331, 557−561
  4. Dutch, D. G. and Mertz, E. T. (1970) Plasminogen purification from human plasma by affinity chromatography. Science 170, 1095−1096 https://doi.org/10.1126/science.170.3962.1096
  5. Emsley, J., Knight, C. G., Farndale, R. W., Barnes, M. J., and Liddington, R. C. (2000) Structural basis of collagen recognition by integrin ${\alpha}2{\beta}1$. Cell 101, 47−56
  6. Nham, S-U. (1999) Characteristics of fibrinogen binding to the domain of CD11c, an ${alpha}$ subunit of p150,95. Biochem. Biophys. Res. Commun. 264, 630−634
  7. Syrovets, T., Tippler, B., Rieks, M., and Simmet, T. (1997) Plasmin is a potent and specific chemoattractant for human peripheral monocytes acting via a cyclic guanosine monophosphatedependent pathway. Blood 89, 4574−4583
  8. Ugarova, T. P. and Yakubenko, V. P. (2001) Recognition of fibrinogen by leukocyte integrins. Ann. NY Acad. Sci. 936, 368−385
  9. Vorup-Jensen, T., Ostermeier, C., Shimaoka, M., Hommel, U., and Springer, T. A. (2003) Structure and allosteric regulation of the ${\alpha}X{\beta}2$ integrin I-domain. Proc. Natl. Acad. Sci. USA 100, 1873−1878
  10. Xiong, J.-P., Li, R., Essafi, M., Stehle, T., and Arnaout, M. A. (2000) An isoleucine-based allosteric switch controls affinity and shape shifting in integrin CD11b A-domain. J. Biol. Chem. 275, 38762−38767
  11. Miles, L. A., Ginsberg, M. H., White, J. G., and Plow, E. F. (1986) Plasminogen interacts with human platelets through two distinct mechanisms. J. Clin. Invest. 77, 2001−2009
  12. Herren, T., Swaisgood, C. M., and Plow, E. F. (2003) Regulation of plasminogen receptors. Front Biosci. 8, 1−8 https://doi.org/10.2741/932
  13. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., et al. (2004) UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605−1612
  14. Tarui, T., Miles, L. A., and Takada, Y. (2001) Specific interaction of angiostatin with integrin ${\alpha}{\gamma}{\beta}3$ in endothelial cells. J. Biol. Chem. 276, 39562−39568
  15. Parkkinen, J. and Rauvala, H. (1991) Interactions of plasminogen and tissue plasminogen activator (t-PA) with amphoterin: enhancement of t-PA-catalyzed plasminogen activation by amphoterin. J. Biol. Chem. 266, 16730−16735
  16. Zhang, L. and Plow, E. F. (1999) Amino acid sequences within the alpha subunit of integrin ${\alpha}M{\beta}2$ (Mac-1) critical for specific recognition of C3bi. Biochemistry 38, 8064−8071
  17. Irigoyen, J. P., Munoz-Canoves, P., Koziczak, M., and Nagamine, Y. (1999) The plasminogen activator system: biology and regulation. Cell Mol. Life Sci. 56, 104−132
  18. Valeryi, K. L., Novokhatny, V., Yakubenko, V. P., Skomorovska- Prokvolit, H. V., and Ugarova, T. P. (2004) Characterization of plasminogen as an adhesive ligand for integrins ${\alpha}M{\beta}2$ (Mac-1) and ${\alpha}5{\beta}1$ (VLA-5). Blood 104, 719−726
  19. Humphries, M. J. (2000) Integrin structure. Biochem. Soc. Trans. 28, 311−339
  20. McGuire, S. L. and Bajt, M. L. (1995) Distinct ligand binding sites in the I-domain of integrin ${\alpha}M{\beta}2$ that differentially affect a divalent cation-dependent conformation. J. Biol. Chem. 270, 25866−25871
  21. Gonzales-Gronow, M., Gawdi, G., and Pizzo, S. V. (2002) Tissue factor is the receptor for plasminogen type 1 on 1-LN human prostate cancer cells. Blood 99, 4562−4567
  22. Majumdar, M., Tarui, T., Shi, B., Akakura, N., Ruf, W., et al. (2004) Plasmin induced migration requires signaling through protease-activated receptor 1 and integrin ${\alpha}9{\beta}1$. J. Biol. Chem. 279, 37528−37534
  23. Gonzales-Gronow, M., Grenett, H. E., Weber, M. R., Gawdi, G., and Pizzo, S. V. (2001) Interaction of plasminogen with dipeptidyl peptidase IV initiates a signal transduction mechanism which regulates expression of matrix metalloproteinase 9 by prostate cancer cells. Biochem. J. 355, 397−407
  24. Pluskota, E., Soloviev, D. A., Bdeir, K., Cines, D. B., and Plow, E. F. (2004) Integrin ${\alpha}M{\beta}2$ orchestrates and accelerates plasminogen activation and fibrinolysis by neutrophils. J. Biol. Chem. 279, 18063−18072
  25. Yakubenko, V. P., Solovjov, D. A., Zhang, L., Yee, V. C., Plow, E. F., et al. (2001) Identification of the binding site for fibrinogen recognition peptide ${\gamma}$383−395 within the ${\alpha}M$ Idomain of integrin ${\alpha}M{\beta}2$. J. Biol. Chem. 275, 13995−14003
  26. Lee, J. O., Rieu, P. M., Arnaout, A., and Liddington, R. C. (1995) Crystal structure of the A domain from the ${alpha}$ Subunit of Integrin CR3 (CD11b/CD18). Cell 80, 631−638
  27. Choi, J. and Nham, S.-U. (2002) Loops within the CD11c Idomain critical for specific recognition of fibrinogen. Biochem. Biophys. Res. Comm. 292, 756−760
  28. Shortman, K. and Liu, Y. J. (2002) Mouse and human dendritic cell subtypes. Nat. Rev. Immunol. 2, 151−161 https://doi.org/10.1038/35056546
  29. Plow, E. F., Herren, T., Redlitz, A., Miles, L. A., and Hoover- Plow, J. L. (1995) The cell biology of the plasminogen system. FASEB J. 9, 939−945
  30. Yakubenko, V. P., Lishko, V. K., Lam, S. C.-T., and Ugarova, T. P. (2002) A molecular basis for integrin ${\alpha}M{\beta}2$ ligand binding promiscuity. J. Biol. Chem. 277, 48635−48642
  31. Diamond, M. S., Garcia-Aguilar, J., Bickford, J. K., Corbi, A. L., and Springer, T. A. (1993) The I-domain is a major recognition site on the leukocyte integrin Mac-1 (CD11b/CD18) for four distinct adhesion ligands. J. Cell Biol. 120, 1031−1043
  32. Loike, J. D., Sodeik, B., Cao, L., Leucona, S., Weitz, J. I., et al. (1991) CD11c/CD18 on neutrophils recognizes a domain at the N terminus of the A alpha chain of fibrinogen. Proc. Natl. Acad. Sci. USA 88, 1044−1048