Study on the Micellization of TTAB/Brij 35 Mixed Systems in Aqueous Solutions of n-Butanol

n-부탄올 수용액에서 TTAB/Brij 35 혼합계면활성제의 미셀화에 대한 연구

  • Gil, Han-Nae (Department of Applied Chemical Engineering, Korea University of Technology & Education) ;
  • Lee, Byung-Hwan (Department of Applied Chemical Engineering, Korea University of Technology & Education)
  • 길한내 (한국기술교육대학교 응용화학공학과) ;
  • 이병환 (한국기술교육대학교 응용화학공학과)
  • Received : 2007.03.13
  • Accepted : 2007.04.10
  • Published : 2007.06.10

Abstract

The critical micelle concentration (CMC) and the counterion binding constant (B) in a mixed micellar state of the trimethyltetradecylammonium bromide (TTAB) with the polyoxyethylene (23) lauryl ether (Brij 35) at $25^{\circ}C$ in water and in aqueous solutions of n-butanol (0.1 M, 0.2 M, and 0.3 M) were determined as a function of ${\alpha}_1$ (the overall mole fraction of TTAB) by the use of electric conductivity method and surface tensiometer method. Various thermodynamic parameters ($X_i$, ${\gamma}_i$, $C_i$, ${a_i}^M$, ${\beta}$, and ${\Delta}H_{mix}$) were calculated by means of the equations derived from the nonideal mixed micellar model. The effects of n-butanol on the micellization of TTAB/Brij 35 mixtures have been also studied by analyzing the measured and calculated thermodynamic parameters.

Keywords

TTAB;Brij 35;critical micelle concentration;counter ion binding constant;non ideal mixed micellar model

References

  1. M. Ueno and H. Asano, Mixed Surfactant Systems, K. Ogino and M. Abe, Ed.; Marcel Dekker Inc.: New York, U. S. A., 258 (1993)
  2. C. Treiner, M. Nortz, C. Vaution, and F. Puisieux, J. Colloid Interface Sci, 125, 261 (1988) https://doi.org/10.1016/0021-9797(88)90074-4
  3. K. S. Sharma, S. R. Patil, and A. K. Rakshit, J. Phys. Chem. B, 108, 12804 (2004) https://doi.org/10.1021/jp048294o
  4. K. Imanishi and Y. Einaga, J. Phys. Chem. B, 111, 62 (2007) https://doi.org/10.1021/jp065317l
  5. P. A. Hassan, S. S. Bhagwat, and C. Manohar, Langmuir, 11, 470 (1995)
  6. N. Gorski, M. Gradzielski, and H. Hoffmann, Langmuir, 10, 2594 (1994) https://doi.org/10.1021/la00016a005
  7. M. Miyake and Y. Einaga, J. Phys. Chem. B, 111, 535 (2007) https://doi.org/10.1021/jp0664465
  8. S. Gerber, V. M. Garamas, G. Milkereit, and V. Vill, Langmuir, 21, 6707 (2005) https://doi.org/10.1021/la050439a
  9. H. U. Kim, J. K. Lee, and K. H. Lim, J. Korean Ind. Eng. Chem., 16, 231 (2005)
  10. Y. C. Kim and B. H. Lee, J. Kor. Chem. Soc., 49, 435 (2005) https://doi.org/10.5012/jkcs.2005.49.5.435
  11. K. H. Lim, K. H. Kang, and M. J. Lee, J. Korean Ind. Eng. Chem., 17, 625 (2006)
  12. I. J. Park and B. H. Lee, J. Kor. Chem. Soc., 50, 190 (2006) https://doi.org/10.5012/jkcs.2006.50.3.190
  13. M. Kumbhakar, T. Goel, T. Mukerjee, and H. Pal, J. Phys. Chem. B, 109, 14168 (2005) https://doi.org/10.1021/jp0520291
  14. R. Zana, C. Picot, and R. Duplessix, J. Colloid Interface Sci., 93, 43 (1983) https://doi.org/10.1016/0021-9797(83)90382-X
  15. E. Feitosa, N. M. Bonassi, and W. Loh, Langmuir, 22, 4512 (2006) https://doi.org/10.1021/la052923j
  16. I. J. Park and B. H. Lee, J. Kor. Univ. of Tech. & Edu., 12, 259 (2006)
  17. J. Penfold, I. Tucker, R. K. Thomas, E. Staples, and R. Schuermann, J. Phys. Chem. B, 109, 10770 (2005) https://doi.org/10.1021/jp052426b
  18. J. H. Clint, Surfactant aggregation, Chapman and Hall, New York, U.S.A., p 130 (1992)
  19. G. Bastiat, B. Gras, A. Khoukh, and J. Francois, Langmuir, 20, 5759 (2004) https://doi.org/10.1021/la049890c
  20. Y. Muto, M. Asada, A. Takasawa, K. Esumi, and K. Meguro, J. Colloid Interface Sci., 124, 632 (1998)
  21. P. C. Shanks and E. I. Franses, J. Phys. Chem., 96, 1794 (1992)
  22. P. M. Holland and D. N. Rubingh, J. Phys. Chem., 87, 1984 (1983) https://doi.org/10.1021/j100234a030