DOI QR코드

DOI QR Code

Rat Liver 10-formyltetrahydrofolate Dehydrogenase, Carbamoyl Phosphate Synthetase 1 and Betaine Homocysteine S-methytransferase were Co-purified on Kunitz-type Soybean Trypsin Inhibitor-coupled Sepharose CL-4B

  • Published : 2007.07.31

Abstract

An Asp/His catalytic site of 10-formyltetrahydrofolate dehydrogenase (FDH) was suggested to have a similar catalytic topology with the Asp/His catalytic site of serine proteases. Many studies supported the hypothesis that serine protease inhibitors can bind and modulate the activity of serine proteases by binding to the catalytic site of serine proteases. To explore the possibility that soybean trypsin inhibitor (SBTI) can recognize catalytic sites of FDH and can make a stable complex, we carried out an SBTI-affinity column by using rat liver homogenate. Surprisingly, the Rat FDH molecule with two typical liver proteins, carbamoyl-phosphate synthetase 1 (CPS1) and betaine homocysteine S-methyltransferase (BHMT) were co-purified to homogeneity on SBTI-coupled Sepharose and Sephacryl S-200 followed by Superdex 200 FPLC columns. These three liver-specific proteins make a protein complex with 300 kDa molecular mass on the gel-filtration column chromatography in vitro. Immuno-precipitation experiments by using anti-FDH and anti-SBTI antibodies also supported the fact that FDH binds to SBTI in vitro and in vivo. These results demonstrate that the catalytic site of rat FDH has a similar structure with those of serine proteases. Also, the SBTI-affinity column will be useful for the purification of rat liver proteins such as FDH, CPS1 and BHMT.

References

  1. Bailey, L. B. and Gregory, J. F., 3rd (1999) Folate metabolism and requirements. J. Nutr. 129, 779-782. https://doi.org/10.1093/jn/129.4.779
  2. Cho, M. Y., Lee, H. S., Lee, K. M., Homma, K., Natori, S. and Lee, B. L. (1999) Molecular cloning and functional properties of two early-stage encapsulation-relating proteins from the coleopteran insect, Tenebrio molitor larvae. Eur. J. Biochem. 262, 737-744. https://doi.org/10.1046/j.1432-1327.1999.00416.x
  3. Christeller, J. T. (2005) Evolutionary mechanisms acting on proteinase inhibitor variability. FEBS J. 272, 5710-5722. https://doi.org/10.1111/j.1742-4658.2005.04975.x
  4. Chumanevich, A. A., Krupenko, S. A. and Davies, C. (2004) The crystal structure of the hydrolase domain of 10-formyltetrahydrofolate dehydrogenase: mechanism of hydrolysis and its interplay with the dehydrogenase domain. J. Biol. Chem. 279, 14355-14364. https://doi.org/10.1074/jbc.M313934200
  5. Cook, R. J., Lloyd, R. S. and Wagner, C. (1991) Isolation and characterization of cDNA clones for rat liver 10-formyltetrahydrofolate dehydrogenase. J. Biol. Chem. 266, 4965-4973.
  6. Guo, L., Enzan, H., Hayashi, Y., Miyazaki, E., Jin, Y., Toi, M., Kuroda, N. and Hiroi, M. (2006) Increased iron deposition in rat liver fibrosis induced by a high-dose injection of dimethylnitrosamine. Exp. Mol. Pathol. 81, 255-261. https://doi.org/10.1016/j.yexmp.2006.07.006
  7. Huo, R., Zhu, H., Lu, L., Ying, L., Xu, M., Xu, Z., Li, J., Zhou, Z. and Sha, J. (2005) Molecular cloning, identification and characteristics of a novel isoform of carbamyl phosphate synthetase I in human testis. J. Biochem. Mol. Biol. 38, 28-33. https://doi.org/10.5483/BMBRep.2005.38.1.028
  8. Inglese, J., Smith, J. M. and Benkovic, S. J. (1990) Active-site mapping and site-specific mutagenesis of glycinamide ribonucleotide transformylase from Escherichia coli. Biochemistry 29, 6678-6687. https://doi.org/10.1021/bi00480a018
  9. Iwanaga, S., and Lee, B. L. (2005) Recent advances in the innate immunity of invertebrate animals. J. Biochem. Mol. Biol. 38, 128-150. https://doi.org/10.5483/BMBRep.2005.38.2.128
  10. Jacobs, R. L., Stead, L. M., Devlin, C., Tabas, I., Brosnan, M. E., Brosnan, J. T. and Vance, D. E. (2005) Physiological regulation of phospholipid methylation alters plasma homocysteine in mice. J. Biol. Chem. 280, 28299-28305. https://doi.org/10.1074/jbc.M501971200
  11. Ju, J. S., Cho, M. H., Brade, L., Kim, J. H., Park, J. W., Ha, N. C., Soderhall, I., Soderhall, K., Brade, H. and Lee, B. L. (2006) A novel 40-kDa protein containing six repeats of an epidermal growth factor-like domain functions as a pattern recognition protein for lipopolysaccharide. J. Immunol. 177, 1838-1845. https://doi.org/10.4049/jimmunol.177.3.1838
  12. Kothe, M., Purcarea, C., Guy, H. I., Evans, D. R. and Powers-Lee, S. G. (2005) Direct demonstration of carbamoyl phosphate formation on the C-terminal domain of carbamoyl phosphate synthetase. Protein Sci. 14, 37-44. https://doi.org/10.1110/ps.041041305
  13. Krupenko, S. A., Wagner, C. and Cook, R. J. (1997) Domain structure of rat 10-formyltetrahydrofolate dehydrogenase. Resolution of the amino-terminal domain as 10-formyltetrahydrofolate hydrolase. J. Biol. Chem. 272, 10273-10278. https://doi.org/10.1074/jbc.272.15.10273
  14. Lee, M. H., Osaki, T., Lee, J. Y., Baek, M. J., Zhang, R., Park, J. W., Kawabata, S., Soderhall, K. and Lee, B. L. (2004) Peptidoglycan recognition proteins involved in 1,3-beta-D-glucan-dependent prophenoloxidase activation system of insect. J. Biol. Chem. 279, 3218-3227. https://doi.org/10.1074/jbc.M309821200
  15. Murthy, H. M., Clum, S. and Padmanabhan, R. (1999) Dengue virus NS3 serine protease. Crystal structure and insights into interaction of the active site with substrates by molecular modeling and structural analysis of mutational effects. J. Biol. Chem. 274, 5573-5580. https://doi.org/10.1074/jbc.274.9.5573
  16. Odani, S., Odani, S., Ono, T. and Ikenaka, T. (1979) Proteinase inhibitors from a mimosoideae legume, Albizzia julibrissin. Homologues of soybean trypsin inhibitor (Kunitz). J. Biochem (Tokyo) 86, 1795-1805. https://doi.org/10.1093/oxfordjournals.jbchem.a132701
  17. Pajares, M. A. and Perez-Sala, D. (2006) Betaine homocysteine S-methyltransferase: just a regulator of homocysteine metabolism? Cell Mol. Life Sci. 63, 2792-2803. https://doi.org/10.1007/s00018-006-6249-6
  18. Perona, J. J. and Craik, C. S. (1995) Structural basis of substrate specificity in the serine proteases. Protein Sci. 4, 337-360. https://doi.org/10.1002/pro.5560040301
  19. Prezelj, A., Anderluh, P. S., Peternel, L. and Urleb, U. (2007) Recent advances in serine protease inhibitors as anticoagulant agents. Curr. Pharm. Des. 13, 287-312. https://doi.org/10.2174/138161207779313605
  20. Rawlings, N. D., Tolle, D. P. and Barrett, A. J. (2004) Evolutionary families of peptidase inhibitors. Biochem. J. 378, 705-716. https://doi.org/10.1042/BJ20031825
  21. Rubio, V. and Cervera, J. (1995) The carbamoyl-phosphate synthase family and carbamate kinase: structure-function studies. Biochem. Soc. Trans. 23, 879-883. https://doi.org/10.1042/bst0230879

Cited by

  1. Proteomics and gene expression analyses of squalene-supplemented mice identify microsomal thioredoxin domain-containing protein 5 changes associated with hepatic steatosis vol.77, 2012, https://doi.org/10.1016/j.jprot.2012.07.001