DOI QR코드

DOI QR Code

Determination and Characterization of Thermostable Esterolytic Activity from a Novel Thermophilic Bacterium Anoxybacillus gonensis A4

  • Faiz, Ozlem (Department of Chemistry, Karadeniz Technical University) ;
  • Colak, Ahmet (Department of Chemistry, Karadeniz Technical University) ;
  • Saglam, Nagihan (Department of Chemistry, Karadeniz Technical University) ;
  • Canakci, Sabriye (Department of Biology, Karadeniz Technical University) ;
  • Belduz, Ali Osman (Department of Biology, Karadeniz Technical University)
  • Published : 2007.07.31

Abstract

A novel hot spring thermophile, Anoxybacillus gonensis A4 (A. gonensis A4) was investigated in terms of capability of tributyrin degradation and characterization of its thermostable esterase activity by the hydrolysis of p-nitrophenyl butyrate (PNPB). It was observed that A. gonensis A4 has an esterase with a molecular weight of 62 kDa. The extracellular crude preparation was characterized in terms of substrate specificity, pH and temperature optima and stability, kinetic parameters and inhibition/activation behaviour towards some chemicals and metal ions. Tributyrin agar assay showed that A. gonensis A4 secreted an esterase and $V_{max}$ and $K_m$ values of its activity were found to be 800 U/L and 176.5 ${\mu}M$, respectively in the presence of PNPB substrate. The optimum temperature and pH, for A. gonensis A4 esterase was $60-80^{\circ}C$ and 5.5, respectively. Although the enzyme activity was not significantly changed by incubating crude extract solution at $30-70^{\circ}C$ for 1 h, the enzyme activity was fully lost at $80^{\circ}C$ for same incubation period. The pH-stability profile showed that original crude esterase activity increased nearly 2-fold at pH 6.0. The effect of some chemicals on crude esterase activity indicated that A. gonensis A4 produce an esterase having serine residue in active site and -SH groups were essential for its activity.

Keywords

Anoxybacillus;Esterase;Lipase;Thermophile;Thermostability

References

  1. Azzolina, O., Vercesi, D., Collina, S. and Ghislandi, V. (1995) Chiral resolution of methyl 2-aryloxypropionates by biocatalytic stereospecific hydrolysis. Farmaco. 50, 221-226.
  2. Baumann, M., Hauer, B. and Bornscheuer, U. T. (2000) Rapid screening of hydrolases for the enantioselective conversion of 'difficult-to-resolve substrates'. Tetrahedron-Asymmetr. 11, 4781-4790. https://doi.org/10.1016/S0957-4166(00)00465-1
  3. Belduz, A. O., Dulger, S. and Demirbag, Z. (2003) Anoxybacillus gonensis sp. nov., a moderately thermophilic, xylose-utilizing, endospore-forming bacterium. Int. J. Syst. Evol. Micr. 53, 1315-1320. https://doi.org/10.1099/ijs.0.02473-0
  4. Bornscheuer, U. T. (2002) Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol. Rev. 26, 73-81. https://doi.org/10.1111/j.1574-6976.2002.tb00599.x
  5. Burcu, Z., Ateþlier, B. and Metin, K. (2006) Production and partial characterization of a novel thermostable esterase from a thermophilic Bacillus sp. Enzyme Microb. Tech. 38, 628-635. https://doi.org/10.1016/j.enzmictec.2005.07.015
  6. Choi, Y. J. and Lee, B. H. (2001) Culture conditions for the production of esterase from Lactobacillus casei CL96. Bioproc. Biosyst. Eng. 24, 59-63. https://doi.org/10.1007/s004490100233
  7. Colak, A. and Güner, S. (2004) Polyhydroxyalkanoate degrading hydrolase-like activities by Pseudomonas sp. isolated from soil. Int. Biodeter. Biodegr. 53, 103-109. https://doi.org/10.1016/j.ibiod.2003.10.006
  8. Colak, A., Pipik, D., Saglam, N., Guner, S., Canakci, S. and Belduz, A. O. (2005) Characterization of a thermoalkalophilic esterase from a novel thermophilic bacterium, Anoxybacillus gonensis G2. Bioresour. Technol. 96, 625-631. https://doi.org/10.1016/j.biortech.2004.06.003
  9. Eggert, T., Pouderoyen, G. V., Pencreac'h, G., Douchet, I., Verger, R., Dijsktra, B. W. and Jeager, K. (2002) Biochemical properties and three dimensional structures of two extracellular lipolitic enzymes from Bacillus subtilis. Colloid Surface B. 26, 37-46. https://doi.org/10.1016/S0927-7765(02)00033-4
  10. Fojan, P., Jonson, P. H., Petersen, M. T. N. and Petersen, S. B. (2000) What distinguishes an esterase from a lipase: a novel structural approach. Biochimie. 82, 1033-1041. https://doi.org/10.1016/S0300-9084(00)01188-3
  11. Gowland, R. K., Kernick, M. and Sundaram, T. K. (1987) Thermophilic bacterial isolates producing lipase. FEMS Microbiol. Lett. 48, 339-343. https://doi.org/10.1111/j.1574-6968.1987.tb02621.x
  12. Hotta, Y., Ezaki, S., Atomi, H. and Imanaka, T. (2002) Extremely stable and versatile carboxylesterase from a hyperthermophilic archaeon. Appl. Environ. Microb. 68, 3925-3931. https://doi.org/10.1128/AEM.68.8.3925-3931.2002
  13. Jung, Y., Lee, J., Sung, C., Oh, T. K. and Kim, H. K. (2003) Nonionic detergent-induced activation of an esterase from Bacillus megaterium 20-1. J. Mol. Catal. B-Enzym. 26, 223-229. https://doi.org/10.1016/j.molcatb.2003.06.006
  14. Kademi, A., Ait- Abdelkader, N., Fakhreddine, L. and Baratti, J. C. (1999) A thermostable esterase activity from newly isolated moderate thermophilic bacterial strains. Enzyme Microb. Tech. 24, 332-338. https://doi.org/10.1016/S0141-0229(98)00127-6
  15. Kademi, A., Ait- Abdelkader, N., Fakhreddine, L. and Baratti, J. C. (2000a) Purification and characterization of a thermostable esterase from the moderate thermophilic bacterium Bacillus circulans. Appl. Microbiol. Biot. 54, 173-179. https://doi.org/10.1007/s002530000353
  16. Kademi, A., Ait- Abdelkader, N., Fakhreddine, L. and Baratti, J. C. (2000b) Characterization of a thermostable esterase from the moderate thermophilic bacterium Bacillus circulans. J. Mol. Catal. B-Enzym. 54, 173-179.
  17. Kawamoto, T., Sonomoto, K. and Tanaka, A. (1987) Esterification in organic solvents: selection of hydrolases and effects of reaction conditions. Biocatalysis. 1, 137-145. https://doi.org/10.3109/10242428709040138
  18. Kierstan, M. P. J. and Coughlan, M. P. (1985) Immobilization of cells and enzymes by gel entrapment; In Immobilized Cells and Enzymes: A Practical Approach, Woodward, J. (ed.), pp. 39-48, Oxford, UK.
  19. Lee, D., Koh, Y., Kim, K., Kim, B., Choi, H., Kim, D., Suhartono, M. T. and Pyun, Y. (1999) Isolation and characterization of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiol. Lett. 179, 393-400. https://doi.org/10.1111/j.1574-6968.1999.tb08754.x
  20. Lima, V. M. G., Krieger, N., Sarquis, M. I. M., Mitchell, D. A., Ramos, L. P. and Fontana, J. D. (2003) Effect of nitrogen and carbon sources on lipase production by Penicillium aurantiogriseum. Food Technol. Biotech. 41, 105-110.
  21. Lineweaver, H. and Burk, D. (1934) The determination of enzyme dissociation constant. J. Am. Chem. Soc. 56, 658-661. https://doi.org/10.1021/ja01318a036
  22. Lopes, M. F. S., Leitao, A. L., Regalla, M., Marques, J. J. F., Carrondo, M. J. T. and Crespo, M. T. B. (2002) Characterization of a highly thermostable extracellular lipase from Lactobacillus plantarum. Int. J. Food Microbiol. 76, 107-115. https://doi.org/10.1016/S0168-1605(02)00013-2
  23. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) Protein mesurement with the folin phenol reagent. J. Biol. Chem. 193, 265-275.
  24. Markossian, S., Becker, P., Mark, H. and Antranikian, G. (2000) Isolation and characterization of lipid-degrading Bacillus thermoleovorans IHI-91 from an ocelandic hot spring. Extremophiles. 4, 365-371. https://doi.org/10.1007/s007920070006
  25. Molinari, F., Brenna, O., Valenti, M. and Aragozzini, F. (1996) Isolation of a novel carboxylesterase from Bacillus coagulans with high enantioselectivity toward racemic esters of 1,2-O-isopropylideneglycerol. Enzyme Microb. Tech. 19, 551-556. https://doi.org/10.1016/S0141-0229(96)00066-X
  26. Musidlowska-Persson, A. and Bornscheuer, U. T. (2003) Recombinant porcine intestinal carboxylesterase: cloning from the pig liver esterase gene by site-directed mutagenesis, functional expression and characterization. Protein Eng. 16, 1139-1145. https://doi.org/10.1093/protein/gzg120
  27. Nawani, N. and Kaur, J. (2000) Purification, characterization and thermostability of a lipase from a thermophilic Bacillus sp. J33. Mol. Cell. Biochem. 206, 91-96. https://doi.org/10.1023/A:1007047328301
  28. Ollis, D. L., Shea, E., Cygler, M. B., Dijkstra, B. and Frolow, F. (1992) The a/a hydrolase fold. Protein. Eng. 5, 197-211. https://doi.org/10.1093/protein/5.3.197
  29. Owusu, R. K. and Cowan, D. A. (1989) Correlation between microbial protein thermostability and resistance to denaturation in aqueus: organic solvent two-phase systems. Enzyme Microb. Tech. 11, 568-574. https://doi.org/10.1016/0141-0229(89)90084-7
  30. Ozen, A., Colak, A., Dincer, B. and Guner, S. (2004) A diphenolase from persimmon fruits (Diospyros kaki L., Ebenaceae). Food Chem. 85, 431-437. https://doi.org/10.1016/j.foodchem.2003.07.022
  31. Quax, W. J. and Broekhuizen, C. P. (1994) Development of a new Bacillus carboxyl esterase for use in the resolution of chiral drugs. Appl. Microbiol. Biot. 41, 425-431.
  32. Suoniemi, A. and Tynkkynen, S. (2002) Cloning and characterization of an esterase from Propionibacteriom feudenreichii ssp. Shermanii. Lait. 82, 81-89. https://doi.org/10.1051/lait:2001007
  33. Tan, T., Zhang, M., Xu, J. and Zhang, J. (2004) Optimization of culture conditions and properties of lipase from Penicillium camembertii Thom PG-3. Process Biochem. 39, 1495-1502. https://doi.org/10.1016/S0032-9592(03)00296-6
  34. Teo, J. W. P., Zhang, L. and Poh, C. L. (2003) Cloning and characterization of a novel lipase from Vibrio harveyi strain AP6. Gene. 312, 181-188. https://doi.org/10.1016/S0378-1119(03)00615-2
  35. Yildirim, M., Col, M., Colak, A., Guner, S., Dulger, S. and Beldüz, A. O. (2005) Diphenolases from Anoxybacillus kestanbolensis strains K1 and $K4^T$. World J. Microb. Biot. 21, 501-507. https://doi.org/10.1007/s11274-004-2392-0
  36. Zhang, M., Wang, J., Li, Z., Xie, J., Yang, Y., Zhong, Y. and Wang, H. (2005) Expression and characterization of the carboxyl esterase Rv3487c from Mycobacterium tuberculosis. Protein Expres. Purif. 42, 59-66. https://doi.org/10.1016/j.pep.2005.03.022

Cited by

  1. A thermoalkaliphilic halotolerant esterase from Rhodococcus sp. LKE-028 (MTCC 5562): Enzyme purification and characterization vol.47, pp.6, 2012, https://doi.org/10.1016/j.procbio.2012.03.020
  2. Purification and characterization of an extracellular lipase from Mucor hiemalis f. corticola isolated from soil vol.114, pp.4, 2012, https://doi.org/10.1016/j.jbiosc.2012.04.023
  3. Characterization of an extracellular thermophilic alkaline esterase produced by Bacillus subtilis DR8806 vol.85-86, 2013, https://doi.org/10.1016/j.molcatb.2012.08.013
  4. Carboxyl ester hydrolase fromPenicillium expansum: cloning, characterization and overproduction byPenicillium griseoroseum vol.115, pp.1, 2013, https://doi.org/10.1111/jam.12215
  5. Genome sequence of Anoxybacillus ayderensis AB04T isolated from the Ayder hot spring in Turkey vol.10, pp.1, 2015, https://doi.org/10.1186/s40793-015-0065-2
  6. Effects of different solid state fermentation substrate on biochemical properties of cutinase from Fusarium sp. vol.72, pp.3-4, 2011, https://doi.org/10.1016/j.molcatb.2011.06.003
  7. Recent discoveries and applications of Anoxybacillus vol.97, pp.4, 2013, https://doi.org/10.1007/s00253-012-4663-2
  8. Dual feeding strategy for the production of α-amylase by Bacillus caldolyticus using complex media vol.26, pp.1-2, 2009, https://doi.org/10.1016/j.nbt.2009.04.005
  9. Purification and characterisation of an alkaliphilic esterase from a culinary medicinal mushroom, Sparassis crispa vol.124, pp.4, 2011, https://doi.org/10.1016/j.foodchem.2010.07.094
  10. A new recombinant phosphotriesterase homology protein from Geobacillus caldoxylosilyticus TK4: An extremely thermo- and pH-stable esterase vol.44, pp.12, 2009, https://doi.org/10.1016/j.procbio.2009.07.014
  11. Cloning, purification and characterization of a thermostable carboxylesterase from Anoxybacillus sp. PDF1 vol.80, pp.1, 2011, https://doi.org/10.1016/j.pep.2011.06.019
  12. pH-Profiling of thermoactive lipases and esterases: Caveats and further notes vol.115, pp.5, 2013, https://doi.org/10.1002/ejlt.201200305
  13. Isolation and Characterization of Thermophilic Bacteria from Geothermal Areas in Turkey and Preliminary Research on Biotechnologically Important Enzyme Production vol.34, pp.1, 2017, https://doi.org/10.1080/01490451.2015.1137662
  14. Characterisation of esterolytic activity from two wild mushroom species, Amanita vaginata var. vaginata and Tricholoma terreum vol.115, pp.4, 2009, https://doi.org/10.1016/j.foodchem.2009.01.090
  15. Biochemical profiles of two thermostable and organic solvent–tolerant esterases derived from a compost metagenome pp.1432-0614, 2019, https://doi.org/10.1007/s00253-019-09695-1