DOI QR코드

DOI QR Code

PKHD1 Gene Silencing May Cause Cell Abnormal Proliferation through Modulation of Intracellular Calcium in Autosomal Recessive Polycystic Kidney Disease

  • Yang, Ji-Yun (Department of Medical Genetics, West China Hospital, Sichuan University, Division of Human Morbid Genomics, State Key Laboratory of Biotherapy) ;
  • Zhang, Sizhong (Department of Medical Genetics, West China Hospital, Sichuan University, Division of Human Morbid Genomics, State Key Laboratory of Biotherapy) ;
  • Zhou, Qin (Mouse Gene Engineering Center, State Key Laboratory of Biotherapy) ;
  • Guo, Hong (Mouse Gene Engineering Center, State Key Laboratory of Biotherapy) ;
  • Zhang, Ke (Mouse Gene Engineering Center, State Key Laboratory of Biotherapy) ;
  • Zheng, Rong (Mouse Gene Engineering Center, State Key Laboratory of Biotherapy) ;
  • Xiao, Cuiying (Department of Medical Genetics, West China Hospital, Sichuan University, Division of Human Morbid Genomics, State Key Laboratory of Biotherapy)
  • Published : 2007.07.31

Abstract

Autosomal recessive polycystic kidney disease (ARPKD) is one of the important genetic disorders in pediatric practice. Mutation of the polycystic kidney and hepatic disease gene 1 (PKHD1) was identified as the cause of ARPKD. The gene encodes a 67-exon transcript for a large protein of 4074 amino acids termed fibrocystin, but its function remains unknown. The neoplastic-like in cystic epithelial proliferation and the epidermal growth factor/epidermal growth factor receptor (EGF/EGFR) axis overactivity are known as the most important characteristics of ARPKD. Since the misregulation of $Ca^{2+}$ signaling may lead to aberrant structure and function of the collecting ducts in kidney of rat with ARPKD, present study aimed to investigate the further mechanisms of abnormal proliferation of cystic cells by inhibition of PKHD1 expression. For this, a stable PKHD1-silenced HEK-293T cell line was established. Then cell proliferation rates, intracellular $Ca^{2+}$ concentration and extracellular signal-regulated kinase 1/2 (ERK1/2) activity were assessed after treatment with EGF, a calcium channel blocker and agonist, verapamil and Bay K8644. It was found that PKHD1-silenced HEK-293T cell lines were hyperproliferative to EGF stimulation. Also PKHD1-silencing lowered the intracellular $Ca^{2+}$ and caused EGF-induced ERK1/2 overactivation in the cells. An increase of intracellular $Ca^{2+}$ in PKHD1-silenced cells repressed the EGF-dependent ERK1/2 activation and the hyperproliferative response to EGF stimulation. Thus, inhibition of PKHD1 can cause EGF-induced excessive proliferation through decreasing intracellular $Ca^{2+}$ resulting in EGF-induced ERK1/2 activation. Our results suggest that the loss of fibrocystin may lead to abnormal proliferation in kidney epithelial cells and cyst formation in ARPKD by modulation of intracellular $Ca^{2+}$.

Keywords

Autosomal recessive polycystic kidney disease;Epidermal growth factor;Extracellular signal-regulated kinase;Intracellular calcium;PKHD1

References

  1. Bergmann, C., Senderek, J., Kupper, F., Schneider, F., Dornia, C., Windelen, E., Eggermann, T., Rudnik-Schoneborn, S., Kirfel, J., Furu, L., Onuchic, L. F., Rossetti, S., Harris, P. C., Somlo, S., Guay-Woodford, L., Germino, G. G., Moser, M., Buttner, R. and Zerres, K. (2004) PKHD1 mutations in autosomal recessive polycystic kidney disease (ARPKD). Hum. Mutat. 23, 453-463. https://doi.org/10.1002/humu.20029
  2. Bergmann, C., Senderek, J., Windelen, E., Kupper, F., Middeldorf, I., Schneider, F., Dornia, C., Rudnik-Schoneborn, S., Konrad, M., Schmitt, C. P., Seeman, T., Neuhaus, T. J., Vester, U., Kirfel, J., Buttner, R. and Zerres, K. (2005) Clinical consequences of PKHD1 mutations in 164 patients with autosomal-recessive polycystic kidney disease (ARPKD). Kidney Int. 67, 829-848. https://doi.org/10.1111/j.1523-1755.2005.00148.x
  3. Falin, R., Veizis, I. E. and Cotton, C. U. (2005) A role for ERK1/2 in EGF- and ATP-dependent regulation of amiloride-sensitive sodium absorption. Am. J. Physiol Cell Physiol. 288, 1003-1011. https://doi.org/10.1152/ajpcell.00213.2004
  4. Fonck, C., Chauveau, D., Gagnadoux, M. F., Pirson, Y. and Grunfeld, J. P. (2001) Autosomal recessive polycystic kidney disease in adulthood. Nephrol. Dial. Transplant. 16, 1648-1652. https://doi.org/10.1093/ndt/16.8.1648
  5. Kandilci, A. and Grosveld, G. C., (2005) SET-induced calcium signaling and MAPK/ERK pathway activation mediate dendritic cell-like differentiation of U937 cells. Leukemia. 19, 1439-1445. https://doi.org/10.1038/sj.leu.2403826
  6. Kato, Y., Tapping, R. I., Huang, S., Watson, M. H., Ulevitch, R. J. and Lee, J. D. (1998) Bmk1/Erk5 is required for cell proliferation induced by epidermal growth factor. Nature 395, 713-716. https://doi.org/10.1038/27234
  7. Kupzig, S., Walker, S. A. and Cullen, P. J. (2005) The frequencies of calcium oscillations are optimized for efficient calciummediated activation of Ras and the ERK/MAPK cascade. Proc. Natl. Acad. Sci. USA 102, 7577-7582. https://doi.org/10.1073/pnas.0409611102
  8. Li, D. W., Liu, J. P., Mao, Y. W., Xiang, H., Wang, J., Ma, W. Y., Dong, Z., Pike, H. M., Brown, R. E. and Reed, J. C. (2005) Calcium-activated RAF/MEK/ERK signaling pathway mediates p53-dependent apoptosis and is abrogated by alpha B-crystallin through inhibition of RAS activation. Mol. Biol. Cell. 16, 4437-4453. https://doi.org/10.1091/mbc.E05-01-0010
  9. Liu, L., Xie, Y. and Lou, L. (2006) PI3K is required for insulinstimulated but not EGF-stimulated ERK1/2 activation. Eur. J. Cell Biol. 85, 367-374. https://doi.org/10.1016/j.ejcb.2005.11.005
  10. Liu, W., Murcia, N. S., Duan, Y., Weinbaum, S., Yoder, B. K., Schwiebert, E. and Satlin, L. M. (2005) Mechanoregulation of intracellular $Ca^{2+}$ concentration is attenuated in collecting duct of monocilium-impaired orpk mice. Am. J. Physiol Renal Physiol. 289, F978-F988. https://doi.org/10.1152/ajprenal.00260.2004
  11. MacRae, D. K., Nemo, R., Sweeney, W. E. and Jr. and Avner, E. D. (2004) EGF-related growth factors in the pathogenesis of murine ARPKD. Kidney Int. 65, 2018-2029. https://doi.org/10.1111/j.1523-1755.2004.00623.x
  12. Mellstrom, B. and Naranjo, J. R. (2001) Mechanisms of Ca(2+)-dependent transcription. Curr. Opin. Neurobiol. 11, 312-319. https://doi.org/10.1016/S0959-4388(00)00213-0
  13. Mellstrom, B., Torres, B., Link, W. A. and Naranjo, J. R. (2004) The BDNF gene: exemplifying complexity in $Ca^{2+}-dependent$ gene expression. Crit. Rev. Neurobiol. 16, 43-49. https://doi.org/10.1615/CritRevNeurobiol.v16.i12.40
  14. Nagano, J., Kitamura, K., Hujer, K. M., Ward, C. J., Bram, R. J., Hopfer, U., Tomita, K., Huang, C. and Miller, R. T. (2005) Fibrocystin interacts with CAML, a protein involved in $Ca^{2+}$ signaling. Biochem. Biophys. Res. Commun. 338, 880-889. https://doi.org/10.1016/j.bbrc.2005.10.022
  15. Nagasawa, Y., Matthiesen, S., Onuchic, L. F., Hou, X., Bergmann, C., Esquivel, E., Senderek, J., Ren, Z., Zeltner, R., Furu, L., Avner, E., Moser, M., Somlo, S., Guay-Woodford, L., Buttner, R., Zerres, K. and Germino, G. G. (2002) Identification and characterization of Pkhd1, the mouse orthologue of the human ARPKD gene. J. Am. Soc. Nephrol. 13, 2246-2258. https://doi.org/10.1097/01.ASN.0000030392.19694.9D
  16. Onuchic, L. F., Furu, L., Nagasawa, Y., Hou, X., Eggermann, T., Ren, Z., Bergmann, C., Senderek, J., Esquivel, E., Zeltner, R., Rudnik-Schoneborn, S., Mrug, M., Sweeney, W., Avner, E. D., Zerres, K., Guay-Woodford, L. M., Somlo, S. and Germino, G. G. (2002) PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin-like plexin-transcription-factor domains and parallel beta-helix 1 repeats. Am. J. Hum. Genet. 70, 1305-1317. https://doi.org/10.1086/340448
  17. Praetorius, H. A. and Spring, K. R. (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J. Membr. Biol. 184, 71-79. https://doi.org/10.1007/s00232-001-0075-4
  18. Praetorius, H. A. and Spring, K. R. (2003) Removal of the MDCK cell primary cilium abolishes flow sensing. J. Membr. Biol. 191, 69-76. https://doi.org/10.1007/s00232-002-1042-4
  19. Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W. S. and Khvorova, A. (2004) Rational siRNA design for RNA interference. Nat. Biotechnol. 22, 326-330. https://doi.org/10.1038/nbt936
  20. Richards, W. G., Sweeney, W. E., Yoder, B. K., Wilkinson, J. E., Woychik, R. P. and Avner, E. D. (1998) Epidermal growth factor receptor activity mediates renal cyst formation in polycystic kidney disease. J. Clin. Invest. 101, 935-939. https://doi.org/10.1172/JCI2071
  21. Roy, S., Dillon, M. J., Trompeter, R. S. and Barratt, T. M. (1997) Autosomal recessive polycystic kidney disease: long-term outcome of neonatal survivors. Pediatr. Nephrol. 11, 302-306. https://doi.org/10.1007/s004670050281
  22. Sairanen, H., Jalanko, H., Hockerstedt, K., Salmela, K., Holmberg, C. and Leijala, M. (1997) Organ transplantation in children. Ann. Chir. Gynaecol. 86, 141-148.
  23. Siroky, B. J., Ferguson, W. B., Fuson, A. L., Xie, Y., Fintha, A., Komlosi, P., Yoder, B. K., Schwiebert, E. M., Guay-Woodford, L. M. and Bell, P. D. (2006) Loss of primary cilia results in deregulated and unabated apical calcium entry in ARPKD collecting duct cells. Am. J. Physiol. Renal. Physiol. 290, 1320-1328. https://doi.org/10.1152/ajprenal.00463.2005
  24. Sweeney, W. E., Chen, Y., Nakanishi, K., Frost, P. and Avner, E. D. (2000) Treatment of polycystic kidney disease with a novel tyrosine kinase inhibitor. Kidney Int. 57, 33-40. https://doi.org/10.1046/j.1523-1755.2000.00829.x
  25. Sweeney, W. E., Jr., Hamahira, K., Sweeney, J., Garcia-Gatrell, M., Frost, P. and Avner, E. D. (2003) Combination treatment of PKD utilizing dual inhibition of EGF-receptor activity and ligand bioavailability. Kidney Int. 64, 1310-1319. https://doi.org/10.1046/j.1523-1755.2003.00232.x
  26. Tovey, S. C., de, S. P., Lipp, P., Thomas, D., Young, K. W., Missiaen, L., De, S. H., Parys, J. B., Berridge, M. J., Thuring, J., Holmes, A. and Bootman, M. D. (2001) Calcium puffs are generic InsP(3)-activated elementary calcium signals and are downregulated by prolonged hormonal stimulation to inhibit cellular calcium responses. J. Cell Sci. 114, 3979-3989.
  27. Veizis, I. E. and Cotton, C. U. (2005) Abnormal EGF-dependent regulation of sodium absorption in ARPKD collecting duct cells. Am. J. Physiol Renal Physiol. 288, F474-F482. https://doi.org/10.1152/ajprenal.00227.2004
  28. Ward, C. J., Hogan, M. C., Rossetti, S., Walker, D., Sneddon, T., Wang, X., Kubly, V., Cunningham, J. M., Bacallao, R., Ishibashi, M., Milliner, D. S., Torres, V. E. and Harris, P. C. (2002) The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat. Genet. 30, 259-269. https://doi.org/10.1038/ng833
  29. Ward, C. J., Yuan, D., Masyuk, T. V., Wang, X., Punyashthiti, R., Whelan, S., Bacallao, R., Torra, R., LaRusso, N. F., Torres, V. E. and Harris, P. C. (2003) Cellular and subcellular localization of the ARPKD protein; fibrocystin is expressed on primary cilia. Hum. Mol. Genet. 12, 2703-2710. https://doi.org/10.1093/hmg/ddg274
  30. Xiong, H., Chen, Y., Yi, Y., Tsuchiya, K., Moeckel, G., Cheung, J., Liang, D., Tham, K., Xu, X., Chen, X. Z., Pei, Y., Zhao, Z. J. and Wu, G. (2002) A novel gene encoding a TIG multiple domain protein is a positional candidate for autosomal recessive polycystic kidney disease. Genomics. 80, 96-104. https://doi.org/10.1006/geno.2002.6802
  31. Yamaguchi, T., Hempson, S. J., Reif, G. A., Hedge, A. M. and Wallace, D. P. (2006) Calcium restores a normal proliferation phenotype in human polycystic kidney disease epithelial cells. J. Am. Soc. Nephrol. 17, 178-187. https://doi.org/10.1681/ASN.2006080912
  32. Yamamoto, T., Cui, X. M. and Shuler, C. F. (2003) Role of ERK1/2 signaling during EGF-induced inhibition of palatal fusion. Dev. Biol. 260, 512-521. https://doi.org/10.1016/S0012-1606(03)00275-6
  33. Zerres, K., Mucher, G., Bachner, L., Deschennes, G., Eggermann, T., Kaariainen, H., Knapp, M., Lennert, T., Misselwitz, J. and von Muhlendahl, K. E. (1994) Mapping of the gene for autosomal recessive polycystic kidney disease (ARPKD) to chromosome 6p21-cen. Nat. Genet. 7, 429-432. https://doi.org/10.1038/ng0794-429
  34. Zerres, K., Rudnik-Schoneborn, S., Deget, F., Holtkamp, U., Brodehl, J., Geisert, J. and Scharer, K. (1996) Autosomal recessive polycystic kidney disease in 115 children: clinical presentation, course and influence of gender. Arbeitsgemeinschaft fur Padiatrische, Nephrologie. Acta Paediatr. 85, 437-445. https://doi.org/10.1111/j.1651-2227.1996.tb14056.x
  35. Zerres, K., Rudnik-Schoneborn, S., Steinkamm, C., Becker, J. and Mucher, G. (1998) Autosomal recessive polycystic kidney disease. J. Mol. Med. 76, 303-309. https://doi.org/10.1007/s001090050221
  36. Zhang, M. Z., Mai, W., Li, C., Cho, S. Y., Hao, C., Moeckel, G., Zhao, R., Kim, I., Wang, J., Xiong, H., Wang, H., Sato, Y., Wu, Y., Nakanuma, Y., Lilova, M., Pei, Y., Harris, R. C., Li, S., Coffey, R. J., Sun, L., Wu, D., Chen, X. Z., Breyer, M. D., Zhao, Z. J., McKanna, J. A. and Wu, G. (2004) PKHD1 protein encoded by the gene for autosomal recessive polycystic kidney disease associates with basal bodies and primary cilia in renal epithelial cells. Proc. Natl. Acad. Sci. USA 101, 2311-2316. https://doi.org/10.1073/pnas.0400073101
  37. Zhuang, S. and Schnellmann, R. G. (2004) $H_2O_2-induced$ transactivation of EGF receptor requires Src and mediates ERK1/2, but not Akt, activation in renal cells. Am. J. Physiol. Renal. Physiol. 286, 858-865. https://doi.org/10.1152/ajprenal.00282.2003

Cited by

  1. NF-κB activation is required for apoptosis in fibrocystin/polyductin-depleted kidney epithelial cells vol.15, pp.1, 2010, https://doi.org/10.1007/s10495-009-0426-7
  2. Aldosterone as a renal growth factor vol.75, pp.8-9, 2010, https://doi.org/10.1016/j.steroids.2009.09.008
  3. Role of renal TRP channels in physiology and pathology vol.38, pp.3, 2016, https://doi.org/10.1007/s00281-015-0527-z
  4. Baicalein and wogonin inhibit collagen deposition in SHR and WKY cardiac fibroblast cultures vol.43, pp.4, 2010, https://doi.org/10.5483/BMBRep.2010.43.4.297
  5. Disrupted cell adhesion but not proliferation mediates cyst formation in polycystic liver disease vol.21, pp.11, 2008, https://doi.org/10.1038/modpathol.2008.115
  6. Cyclic AMP-mediated cyst expansion vol.1812, pp.10, 2011, https://doi.org/10.1016/j.bbadis.2010.11.005
  7. The cAMP effectors Epac and protein kinase a (PKA) are involved in the hepatic cystogenesis of an animal model of autosomal recessive polycystic kidney disease (ARPKD) vol.49, pp.1, 2009, https://doi.org/10.1002/hep.22636
  8. Pathophysiology of childhood polycystic kidney diseases: new insights into disease-specific therapy vol.75, pp.1-2, 2014, https://doi.org/10.1038/pr.2013.191
  9. Comparative proteomic analysis suggests that mitochondria are involved in autosomal recessive polycystic kidney disease vol.12, pp.15-16, 2012, https://doi.org/10.1002/pmic.201100590
  10. Novel insights into TRPV4 function in the kidney vol.465, pp.2, 2013, https://doi.org/10.1007/s00424-012-1190-z
  11. Protein kinase D stabilizes aldosterone-induced ERK1/2 MAP kinase activation in M1 renal cortical collecting duct cells to promote cell proliferation vol.118, pp.1-2, 2010, https://doi.org/10.1016/j.jsbmb.2009.09.014
  12. Vasopressin Antagonists in Polycystic Kidney Disease vol.28, pp.3, 2008, https://doi.org/10.1016/j.semnephrol.2008.03.003
  13. Genomic Profiling on an Unselected Solid Tumor Population Reveals a Highly Mutated Wnt/β-Catenin Pathway Associated with Oncogenic EGFR Mutations vol.8, pp.2, 2018, https://doi.org/10.3390/jpm8020013