Inconsistent Activities of Titanium Oxide Photocatalysts

산화티타늄 광촉매 활성의 비일관성

  • Ryu, Jungho (School of Environmental Science & Engineering Pohang University of Science and Technology) ;
  • Choi, Wonyong (School of Environmental Science & Engineering Pohang University of Science and Technology)
  • 류정호 (포항공과대학교 환경공학부) ;
  • 최원용 (포항공과대학교 환경공학부)
  • Received : 2007.06.05
  • Accepted : 2007.07.06
  • Published : 2007.08.10

Abstract

This study measured the photocatalytic activities of five $TiO_2$ samples commercially available in terms of the degradation rate of nine organic substrates. Efforts were made to correlate the activities with the properties of both catalysts and substrates but little correlation was found. The result clearly shows that the photocatalytic activities sensitively depend on the kind of the test substrates, which strongly supports the fact that the activity measured with one or two model compounds cannot represent the overall performance of a photocatalyst. Therefore, this multi-aspect and inconsistent activity of photocatalytic reaction should be fully understood prior to establish the standard protocol for the activity determination.

Keywords

$TiO_2$;photocatalysis;pollutant degradation;photocatalytic activity test

Acknowledgement

Supported by : 학술진흥재단

References

  1. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev., 95, 69 (1995)
  2. J. M. Herrmann, Topics Catal., 34, 49 (2005) https://doi.org/10.1007/s11244-005-3788-2
  3. Y. Du and J. Rabani, J. Phys. Chem. B, 107, 11970 (2003) https://doi.org/10.1021/jp035491z
  4. D. Hufschmidt, D. Bahnemann, J. J. Testa, C. A. Emilio, and M. I. Litter, J. Photochem. Photobiol. A, 148, 223 (2002) https://doi.org/10.1016/S1010-6030(02)00048-5
  5. A. G. Agrios, and P. Pichat, J. Photochem. Photobiol. A, 2006, 130 (2006)
  6. V. Augugliaro, L. Palmisano, A. Sclafani, C. Minero, and E. Pelizzetti, Toxicol. Environ. Chem., 16, 89 (1988) https://doi.org/10.1080/02772248809357253
  7. D. F. Ollis and H. Al-Ekabi, Photocatalytic Purification and Treatment of Water and Air. Elsevier, Amsterdam (1993)
  8. U. Stafford, K. A. Gray, and P. V. Kamat, J. Phys. Chem., 98, 6343 (1994)
  9. W. Choi and M. R. Hoffmann, Environ. Sci. Technol., 29, 1646 (1995)
  10. H. Park and W. Choi, J. Phys. Chem. B, 108, 4086 (2004) https://doi.org/10.1021/jp036735i
  11. N. Serpone, G. Sauve, R. Koch, H. Tahiri, P. Pichat, P. Piccinini, E. Pelizzetti, and H. Hidaka, J. Photochem. Photobiol. A, 94, 191 (1996)
  12. J. Park and W. Choi, Langmuir, 20, 11523 (2004) https://doi.org/10.1021/la048051n
  13. W. Choi, A. Termin, and M. R. Hoffmann, Angew. Chem. Int. Ed. Engl., 33, 1091 (1994)
  14. F. Sabin, T. Turk, and A. Vogler, J. Photochem. Photobiol. A, 63, 99 (1992)
  15. D. W. Bahnemann, S. N. Kholuiskaya, R. Dillert, A. I. Kulak, and A. I. Kokorin, Appl. Catal. B, 36, 161 (2002) https://doi.org/10.1016/S0926-3373(01)00301-0
  16. J. Theurich, M. Lindner, and D. W. Bahnemann, Langmuir, 12, 6368 (1996)
  17. K. Okamoto, Y. Yamamoto, H. Tanaka, M. Tanaka, and A. Itaya, Bull. Chem. Soc. Jpn., 58, 2015 (1985) https://doi.org/10.1246/bcsj.58.2015
  18. C. Richard, New. J. Chem., 18, 443 (1994)
  19. S. G. Hur, T. W. Kim, S.-J. Hwang, H. Park, W. Choi, S. J. Kim, and J.-H. Choy, J. Phys. Chem. B, 109, 15001 (2005)
  20. T. Tatsuma, S. Tachibana, and A. Fujishima, J. Phys. Chem. B, 105, 6987 (2001) https://doi.org/10.1021/jp011108j