The Chacteristics of Resonant Resistance Change of the Piezoelectric Quartz Crystal Depending on the Polymer Polarity

고분자의 극성에 따른 수정진동자 공진저항의 변화 특성

  • Park, Ji Sun (Department of Chemical Engineering, Dong-A University) ;
  • Park, Jung Jin (Department of Chemical Engineering, Dong-A University) ;
  • Lee, Sang Rok (Department of Chemical Engineering, Dong-A University) ;
  • Chang, Sang Mok (Department of Chemical Engineering, Dong-A University) ;
  • Kim, Jong Min (Department of Chemical Engineering, Dong-A University)
  • 박지선 (동아대학교 공과대학 화학공학과) ;
  • 박정진 (동아대학교 공과대학 화학공학과) ;
  • 이상록 (동아대학교 공과대학 화학공학과) ;
  • 장상목 (동아대학교 공과대학 화학공학과) ;
  • 김종민 (동아대학교 공과대학 화학공학과)
  • Received : 2006.11.07
  • Accepted : 2007.01.02
  • Published : 2007.02.10

Abstract

We have demonstrated the resonant resistance pattern changes of the polymer film in the quartz crystal analysis by the function of the molecular polarity phase transition phenomena. PVA and PMMA/PVAc blend films were used as hydrophilic and/or hydrophbic film, respectively. In the comparison between the hydrophilic shows the pattern changes near by the phase transition temperature. For more detailed explanation, the static capacity in the oscillation parameter was measured and the morphology of Au quartz crystal electrode was studied by AFM. It is suggested that the different resonant resistance pattern change is reliable in the condition of different polarity, and the conclusion is important to analysis of the real mechanism a normal quartz crystal experiments.

Acknowledgement

Supported by : 동아대학교

References

  1. W. H. King, Anal. Chem., 36, 1735 (1964) https://doi.org/10.1021/ac60215a012
  2. J. Hlavay and G. G. Guilbault, Anal. Chem., 49, 1890 (1977) https://doi.org/10.1021/ac50021a007
  3. T. Nomura and T. Nagamune, Anal. Chim. Acta., 131, 97 (1981) https://doi.org/10.1016/S0003-2670(01)93538-X
  4. H. Shons, F. Dorman, and J. Najarian, J. Biomed. Mater. Res., 6, 565 (1972) https://doi.org/10.1002/jbm.820060608
  5. H. Muramatsu, J. M. Dicks, E. Tamiya, and I. Karube, Anal. Chem., 59, 2760 (1987) https://doi.org/10.1021/ac00150a007
  6. H. Muramatsu, M. Suzuki, E. Tamiya, and I. Karube, Anal. Chim. Acta., 215, 91 (1988) https://doi.org/10.1016/S0003-2670(00)85269-1
  7. H. Muramatsu, M. Suzuki, and E. Tamiya, and I. Karube, Anal. Chim. Acta., 217, 321 (1989) https://doi.org/10.1016/S0003-2670(00)80413-4
  8. K. Itaya, T. Ataka, and S. Toshima, J. Am. Chem. Soc., 104, 4767 (1982) https://doi.org/10.1021/ja00382a006
  9. E. S. Grabbe, R. P. Buck, and O. R. Melroy, J. Electroanal. Chem., 59, 2760 (1987)
  10. Bruckenstein and M. Shay, J. Electroanal. Chem. Interfacial Electrochem., 280, 73 (1985) https://doi.org/10.1016/0022-0728(90)87085-X
  11. J. M. Kim, S. M. Chang, and H. Muramatsu, Polymer, 40, 3291 (1999)
  12. H. Muramatsu, J. M. Kim, and S. M. Chang, Anal. Bioanal. Chem., 372, 314 (2002) https://doi.org/10.1007/s00216-001-1178-6
  13. G. Sauerbrey, Phyzik., 155, 206 (1959) https://doi.org/10.1007/BF01337937
  14. K. K. Kanazawa and J. G. Gordon II, Anal. Chim. Acta, 175, 99 (1985) https://doi.org/10.1016/S0003-2670(00)82721-X
  15. H. Muramatsu, E. Tamiya, and I. Karube, Anal. Chem., 60, 2142 (1988) https://doi.org/10.1021/ac00170a032
  16. H. Muramatsu, X. Ye, M. Suda, T. Sakuhura, and T. Ataka, J. Electroanal. Chem. Interfacial Electrochem., 322, 311 (1992) https://doi.org/10.1016/0022-0728(92)80085-I
  17. S. M. Chang, J. M. Kim, J. S. Park, T. I. Son, and H. Muramatsu, J. Korean Ind. Eng. Chemistry, 9, 44 (1998)
  18. S. H. Song, J. M. Kim, D. S. Han, J. Y. Park, J. S. Park, and S. M. Chang, J. Korean Ind. Eng. Chem., 10, 784 (1999)
  19. D. A. Buttry and M. D. Ward, Chem. Rev., 92, 1355 (1992) https://doi.org/10.1021/cr00014a006
  20. B. J. Lee, G. S. Choi, J. U. Kim, S. M. Chang, J. M. Kim, and H. Muramatsu, Mol. Cryst. Liq. Cryst., 316, 137 (1998)