DOI QR코드

DOI QR Code

Detection of Mendelian and Parent-of-origin Quantitative Trait Loci in a Cross between Korean Native Pig and Landrace I. Growth and Body Composition Traits

  • Kim, E.H. ;
  • Choi, B.H. ;
  • Kim, K.S. ;
  • Lee, C.K. ;
  • Cho, B.W. ;
  • Kim, T.-H. ;
  • Kim, J.-J.
  • Received : 2006.09.04
  • Accepted : 2006.11.27
  • Published : 2007.05.01

Abstract

This study was conducted to detect quantitative trait loci (QTL) affecting growth and body composition in an $F_2$ reference population of Korean native pig and Landrace crossbreds. The three-generation mapping population was generated with 411 progeny from 38 $F_2$ full-sib families, and 133 genetic markers were used to produce a sex-average map of the 18 autosomes. The data set was analyzed using least squares Mendelian and parent-of-origin interval-mapping models. Lack-of-fit tests between the models were used to characterize QTL for mode of expressions. A total of 8 (39) QTL were detected at the 5% genome (chromosome)-wise level for the 17 analyzed traits. Of the 47 QTL detected, 21 QTL were classified as Mendelian expressed, 13 QTL as paternally expressed, 6 QTL as maternally expressed, and 7 QTL as partially expressed. Of the detected QTL at 5% genome-wise level, two QTL had Mendelian mode of inheritance on SSC6 and SSC9 for backfat thickness and bone weight, respectively, two QTL were maternally expressed for leather weight and front leg weight on SSC6 and SSC12, respectively, one QTL was paternally expressed for birth weight on SSC4, and three QTL were partially expressed for hot carcass weight and rear leg weight on SSC6, and bone weight on SSC13. Many of the Mendelian QTL had a dominant (complete or overdominant) mode of gene action, and only a few of the QTL were primarily additive, which reflects that heterosis for growth is appreciable in a cross between Korean native pig and Landrace. Our results indicate that alternate breed alleles of growth and body composition QTL are segregating between the two breeds, which could be utilized for genetic improvement of growth via marker-assisted selection.

Keywords

Quantitative Trait Loci;Swine;Growth;Korean Native Pig;Landrace

References

  1. Kim, J.-J. H. Zhao, H. Thomsen, M. F. Rothschild and J. C. M. Dekkers. 2005b. Combined line-cross and half-sib QTL analysis of crosses between outbred lines. Genet. Res. 85:235-248. https://doi.org/10.1017/S0016672305007597
  2. Knott, S. A., L. Marklund, C. S. Haley, K. Andersson, W. Davis, H. Ellegren, M. Fredholm, I. Hansson, B. Hoyheim, K. Lundstrom, M. Moller and L. Andersson. 1998. Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and Large White pigs. Genet. 149:1069-1080.
  3. McElroy, J. P., J.-J. Kim, D. E. Harry, S. R. Brown, J. C. M. Dekkers and S. J. Lamont. 2006. Identification of trait loci affecting white meat parentage and other growth and carcass traits in commercial broiler chickens. Poult. Sci. 85:593-605. https://doi.org/10.1093/ps/85.4.593
  4. Su Y.-H., M. A. Baoyu and Y.-Z. Xiong. 2004. Genetic location of body composition traits in pigs. Hereditas (Beijing) 26(2):163-166.
  5. Kim, J.-J., M. F. Rothschild, J. Beever, S. Rodriguez-Zas and J. C. M. Dekkers. 2005a. Joint analysis of two breed cross populations in pigs to improve detection and characterization of quantitative trait loci. J. Anim. Sci. 83:1229-1240. https://doi.org/10.2527/2005.8361229x
  6. McLaren, D. G., D. S. Buchanan and R. K. Johnson. 1987. Growth performance for four breeds of swine: crossbred females and purebred and crossbred boars. J. Anim. Sci. 64:99-108. https://doi.org/10.2527/jas1987.64199x
  7. Cameron, N. D. 1994. The value of pig selection experiments. Proceedings of the 5th World Congress on Genetics Applied to Livestock Production 19:41-48.
  8. Edwards, D. B., R. O. Bates and W. N. Osburn. 2003. Evaluation of Duroc- vs. Pietrain-sired pigs for carcass and meat quality measures. J. Anim. Sci. 81:1895-1899. https://doi.org/10.2527/2003.8181895x
  9. Thomsen, H., H. K. Lee, M. F. Rothschild, M. Malek and J. C. M. Dekkers. 2004. Characterization of quantitative trait loci for growth and meat quality in a cross between commercial breeds of swine. J. Anim. Sci. 82:2213-2228. https://doi.org/10.2527/2004.8282213x
  10. Bidanel, J., D. Milan, N. Iannuccelli, Y. Amigues, M. Boscher, F. Bourgeois, J. Caritez, J. Gruand, P. Le Roy, H. Lagant, R. Quintanilla, C. Renard, J. Gellin, L. Ollivier and C. Chevalet. 2001. Detection of quantitative trait loci for growth and fatness in pigs. Genet. Sel. Evol. 33:289-309. https://doi.org/10.1186/1297-9686-33-3-289
  11. Bidanel, J. P. and M. Rothschild. 2002. Current status of quantitative trait locus mapping in pigs. Pig News and Information 23(2):39N-53N.
  12. Walling, G. A., P. M. Visscher, L. Andersson, M. F. Rothschild, L. Wang, G. Moser, M. A. M. Groenen, J.-P. Bidanel, S. Cepica, A. L. Archibald, H. Geldermann, D. J. de Koning, D. Milan and C. S. Haley. 2000. Combined analyses of data from quantitative trait loci mapping studies: chromosome 4 effects on porcine growth and fatness. Genet. 155:1369-1378.
  13. Rohrer, G. and J. Keele. 1998. Identification of quantitative trait loci affecting carcass composition in swine. I. Fat deposition trait. J. Anim. Sci. 76:2247-2254. https://doi.org/10.2527/1998.7692247x
  14. Green, P., K. Fallis and S. Crooks. 1994. Documentation for CRIMAP version 2.4, Washington University School of Medicine, St. Louis, MO.
  15. Haley, C. S., S. A. Knott and J.-M. Elsen. 1994. Mapping quantitative trait loci in crosses between outbred lines using least squares. Genet. 136:1195-1207.
  16. Van Laere, A. S., M. Nguyen, M. Braunschweig, C. Nezer, C. Collette, L. Moreau, A. L. Archibald, C. S. Haley, N. Buys, M. Tally, G. Andersson, M. Georges and L. Andersson. 2003. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 425:832-836. https://doi.org/10.1038/nature02064
  17. De Koning, D. J., L. L. G. Janss, A. P. Rattink, P. A. M. van Oers, B. J. de Vries, M. A. M. Groenen, J. J. van der Poel, P. N. de Groot, E. W. Brascamp and J. A. M. van Arendonk. 1999. Detection of quantitative trait loci for backfat thickness and intramuscular fat content in pigs (Sus scrofa). Genet. 152:1679-1690.
  18. Moore, T. and D. Haig. 1991. Genomic imprinting in mammalian development: A parental tug-of-war. Trends Genet. 7:45-49. https://doi.org/10.1016/0168-9525(91)90230-N
  19. Choy, Y. H., G. J. Jeon, T. K. Kim, B. H. Choi, I. C. Cheong, H. K. Lee, K. S. Seo, S. D. Kim, Y. I. Park and H. W. Chung. 2002b. Genetic analyses of carcass characteristics in crossbred pigs: cross between Landrace sows and Korean wild boars. Asian-Aust. J. Anim. Sci. 15:1080-1084. https://doi.org/10.5713/ajas.2002.1080
  20. Kim, T. H., K. S. Kim, B. H. Choi, D. H. Yoon, G. W. Jang, K. T. Lee, H. Y. Chung, H. Y. Lee, H. S. Park and J. W. Lee. 2005c. Genetic structure of pig breeds from Korea and China using microsattellite loci analysis. J. Anim. Sci. 83:2255-2263. https://doi.org/10.2527/2005.83102255x
  21. Choy, Y. H., G. J. Jeon, T. K. Kim, B. H. Choi and H. W. Chung. 2002a. Ear type and coat color on growth performances of crossbred pigs. Asian-Aust. J. Anim. Sci. 15:1178-1181. https://doi.org/10.5713/ajas.2002.1178
  22. Yue, G., A. Stratil, M. Kopecny, D. Schroffelova, J. Schroffel Jr., J. Hojny, S Cepica, R. Davoli, P. Zambonelli, C. Brunsch, I. Sternstein, G. Moser, H. Bartenschlager, G. Reiner and H. Geldermann. 2003. Linkage and QTL mapping for Sus scrofa chromosome 6. J. Anim. Breed. Genet. 120(Suppl. 1):45-55. https://doi.org/10.1046/j.0931-2668.2003.00423.x
  23. De Koning, D. J., A. P. Rattink, B. Harlizius, J. A. M. van Arendonk, E. W. Brascamp and M. A. M. Groenen. 2000. Genome-wide scan for body composition in pigs reveals important role of imprinting. Proc. Natl. Acad. Sci. USA 97:7947-7950. https://doi.org/10.1073/pnas.140216397
  24. Sato S, Y. Oyamada, K. Atsuji, T. Nade, S. Sato, E. Kobayashi, T. Mitsuhashi, K. Nirasawa, A. Komatsuda, Y. Saito, S. Terai, T. Hayashi and Y. Sugimoto. 2003. Quantitative trait loci analysis for growth and carcass traits in a Meishan$\times$Duroc F2 resource population. J. Anim. Sci. 81:2938-2949. https://doi.org/10.2527/2003.81122938x
  25. Choi, B. H., J. S. Lee, G. W. Jang, H. Y. Lee, J. W. Lee, K. T. Lee, H. Y. Chung, H. S. Park, S. J. Oh, S. S. Sun, K. H. Myung, I. C. Cheong and T. H. Kim. 2006. Mapping of the porcine Calpastatin gene and association study of its variance with economic traits in pigs. Asian-Aust. J. Anim. Sci. 19:1085-1089. https://doi.org/10.5713/ajas.2006.1085
  26. Ovilo, C., A. Oliver, J. L. Noguera, A. Clop, C. Barragan, L. Varona, C. Rodriguez, M. Toro, A. Sanchez, M. Perez-Enciso and L. Silio. 2002. Test for positional candidate genes for body composition on pig chromosome 6. Genet. Sel. Evol. 34:465-79. https://doi.org/10.1186/1297-9686-34-4-465

Cited by

  1. Porcine Fatty Acid Synthase Gene Polymorphisms Are Associated with Meat Quality and Fatty Acid Composition vol.31, pp.3, 2011, https://doi.org/10.5851/kosfa.2011.31.3.356
  2. Identification of SNPs Affecting Porcine Carcass Weight with the 60K SNP Chip vol.55, pp.4, 2013, https://doi.org/10.5187/JAST.2013.55.4.231
  3. Length polymorphism in OGT between Korean native pig, Chinese Meishan, and the Western pig breeds vol.57, pp.1, 2015, https://doi.org/10.1186/s40781-015-0045-5

Acknowledgement

Supported by : Korea Rural Development Administration, National Livestock Research Institute