DOI QR코드

DOI QR Code

Animal Breeding: What Does the Future Hold?

  • Eisen, E.J. (Animal Science Department., Box 7621, North Carolina State University)
  • Received : 2006.02.15
  • Accepted : 2006.07.10
  • Published : 2007.03.01

Abstract

An overview of developments important in the future of animal breeding is discussed. Examples from the application of quantitative genetic principles to selection in chickens and mice are given. Lessons to be learned from these species are that selection for production traits in livestock must also consider selection for reproduction and other fitness-related traits and inbreeding should be minimized. Short-term selection benefits of best linear unbiased predictor methodology must be weighed against long-term risks of increased rate of inbreeding. Different options have been developed to minimize inbreeding rates while maximizing selection response. Development of molecular genetic methods to search for quantitative trait loci provides the opportunity for incorporating marker-assisted selection and introgression as new tools for increasing efficiency of genetic improvement. Theoretical and computer simulation studies indicate that these methods hold great promise once genotyping costs are reduced to make the technology economically feasible. Cloning and transgenesis are not likely to contribute significantly to genetic improvement of livestock production in the near future.

References

  1. Anderson, L. 2001. Genetic dissection of phenotypic diversity in farm animals. Nature Rev. Genet. 2:130-138. https://doi.org/10.1038/35052563
  2. Casas, E., S. D. Shackelford, J. W. Keele, R. T. Stone, S. M. Kappes and M. A. Koohmaraie. 2000. Quantitative trait loci affecting growth and carcass composition of cattle segregating alternate forms of myostatin. J. Anim. Sci. 78:560-569. https://doi.org/10.2527/2000.783560x
  3. Eisen, E. J. 1980. Conclusions from long-term selection experiments with mice. Z. Tier. Züchtgsbiol. 97:305-319.
  4. Georges, M. 1998. Mapping genes underlying production traits in livestock. In Animal Breeding Technology for the 21st century. (Ed. A. J. Clark). Harwood, Amsterdam, pp. 78-101.
  5. Grobet, L., L. J. R. Martin, D. Poncelot, D. Pirottin, B. Brouwers, J. Riquet, A. Schoeberlein, S. Dunner, F. Menissier, J. Massabanda, R. Fries, R. Hansett and M. Georges. 1997. A deletion in the bovine myostatin gene causes the doublemuscled phenotype. Nature Genet. 17:71-74. https://doi.org/10.1038/ng0997-71
  6. Haley, C. 1999. Advances in quantitative trait loci mapping. In From Jay Lush to Genomics: Visions for Animal Breeding and Genetics. (Ed. J. C. M. Dekkers, S. J. Lamont and M. F. Rothschild). Iowa State University, Ames, Iowa, pp. 47-59.
  7. Hospital, F. and A. Charcosset. 1997. Marker-assisted introgression of quantitative trait loci. Genet. 147:1469-1485.
  8. Hunton, P. 1990. Industrial-breeding and selection. In: Poultry Breeding and Genetics. (Ed. R. D. Crawford). Elsevier, Amsterdam, pp. 985-1028.
  9. Kashi, Y., E. Hallerman and M. Soller. 1990. Marker-assisted selection of candidate bulls for progeny testing programmes. Anim. Prod. 51:63-74. https://doi.org/10.1017/S0003356100005158
  10. Lande, R. and R. Thompson. 1990. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genet. 124:734-756.
  11. Mackinnon, M. J. and M. A. J. George. 1998. Marker-assisted preselection of young dairy sires prior to progeny-testing. Livest. Prod. Sci. 54:229-250. https://doi.org/10.1016/S0301-6226(97)00169-3
  12. Muir, W. M. 2002. Use of molecular genetics in poultry breeding. Proc. 7th World Congr. Genet. Appl. Livest. Prod. 30:193-200.
  13. Newman, S. 1994. Quantitative- and molecular-genetic effects on animal well-being: Adaptive mechanisms. J. Anim. Sci. 72:1641-1653. https://doi.org/10.2527/1994.7261641x
  14. Rocha, J. L., D. Pomp and L. D. Van Vleck. 2002. QTL analysis in livestock. In Quantitative Trait Loci: Methods and Protocols (Ed. N. J. Camp and A. Cox). Humana. Totowa, New Jersey, pp. 311-346.
  15. Rothschild, M. F. and L. L. Christian. 1988. Genetic control of front leg weakness in Duroc swine. I. Direct response to five generations of divergent selection. Livest. Prod. Sci. 19:459-471. https://doi.org/10.1016/0301-6226(88)90012-7
  16. Rothschild, M. F. and M. Soller. 1997. Candidate gene analysis to detect genes controlling traits of economic importance in domestic livestock. Probe 8:13-20.
  17. Ruane, J., G. Klemetsdal and E. Sehested. 1997. Views on the potential impact of cloning in animal breeding and production. Acta. Agric. Scand. Sect. A. Anim. Sci. 47:209-212.
  18. Spelman, R. J. and H. Bovenhuis. 1998. Moving from QTL experimental results to the utilization of QTL in breeding programmes. Anim. Genet. 29:77-84. https://doi.org/10.1046/j.1365-2052.1998.00238.x
  19. Spelman, R. J. and D. J. Garrick. 1998, Genetic and economic responses for within-family marker-assisted selection in dairy cattle breeding schemes. J. Dairy Sci. 81:2942-2950. https://doi.org/10.3168/jds.S0022-0302(98)75856-4
  20. Toro, M. A., B. Nieto and C. Salgado. 1988. A note on minimization of inbreeding in small scale breeding programmes. Livest. Prod. Sci. 20:317-323. https://doi.org/10.1016/0301-6226(88)90026-7
  21. Woolliams, J. A. 1989. Modifications to MOET nucleus breeding schemes to improve rates of genetic progress and decrease rates of inbreeding in dairy cattle. Anim. Prod. 49:1-14. https://doi.org/10.1017/S0003356100004190
  22. McDaniel, B. T. 2001. Uncontrolled inbreeding: J. Dairy Sci. 84 (E. Supp.): E185-E186. http://www.adsa.org/jds/papers/2001/jds_es185.pdf. https://doi.org/10.3168/jds.S0022-0302(01)70214-7
  23. Roberts, R. C. 1979. Side effects of selection for growth in laboratory mice: Livest. Prod. Sci. 6:93-104. https://doi.org/10.1016/0301-6226(79)90034-4
  24. Rothschild, M. F., C. Jacobson, D. A. Vaske, C. K. Tuggle, L. Wang, T. Short, G. Erchardt, S. Sasaki, A. Vincent, D. G. McLaren, O. Southwood, H. van der Steen, A. Mileham and G. Plastow. 1996. The estrogen receptor locus is associated with a major gene influencing litter size in pigs. Proc. Natl. Acad. Sci. USA 93:201-205. https://doi.org/10.1073/pnas.93.1.201
  25. Wilmut, I., A. E. Schnieke, J. McWhir, A. J. Kind and K. H. S. Campbell. 1997. Viable offspring derived from fetal and adult mammalian cells. Nature 385:810-813. https://doi.org/10.1038/385810a0
  26. Pursel, V. G. 1998. Modification of production traits. In Animal Breeding Technology for the 21st Century (Ed. A. J. Clark). Harwood, Amsterdam, pp. 183-200.
  27. Ashwell, M. S., C. P. Van Tassell and T. S. Sonstegard. 2001. A genome scan to identify quantitative trait loci affecting economically important traits in a US Holstein population. J. Dairy Sci. 84:2535-2542. https://doi.org/10.3168/jds.S0022-0302(01)74705-4
  28. Toro, M. A. and M. Perez-Grundy. 1990. Optimization of selection response under restricted inbreeding. Genet. Sel. Evol. 22:93-107. https://doi.org/10.1186/1297-9686-22-1-93
  29. Visscher, P. M., S. Van Der Beek and C. S. Haley. 1998. Marker assisted selection. In Animal Breeding Technology for the 21st Century (Ed. A. J. Clark). Harwood, Amsterdam, pp. 119-136
  30. Zhang, W. and C. Smith. 1992. The use of marker-assisted selection with linkage disequilibrium. Theor. Appl. Genet. 83:813-820.
  31. Zhang, W. and C. Smith. 1993. The use of marker-assisted selection with linkage disequilibrium: the effects of several additional factors. Theor. Appl. Genet. 86:492-496. https://doi.org/10.1007/BF00838565
  32. Colleau, J. J. 1998. Relative economic efficiency of embryo transfer and marker assisted selection in dairy cattle selection nuclei. Proc. 6th World Congr. Genet. Appl. Livest. Prod. 25:419-422.
  33. Meuwissen, T. H. E. 1997. Maximizing the response of selection with a predefined rate of inbreeding. J. Anim. Sci. 75:934-940. https://doi.org/10.2527/1997.754934x
  34. Sax, K. 1923. The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genet. 8:552-560.
  35. Van Vleck, L. D. 1999. Implications of cloning for breed improvement strategies: Are traditional methods of animal improvement obsolete? J. Anim. Sci. Proc. Amer. Soc. Anim.Sci. http://www.asas.org/JAS/papers/1999/am/am010.pdf.
  36. Ollivier, L. 1999. Scientific challenges to animal breeding and genetics. In From Jay Lush to Genomics: Visions for Animal Breeding and Genetics (Ed. J. C. M. Dekkers, S. J. Lamont and M. F. Rothschild). Iowa State University, Ames, Iowa, pp. 24-34.
  37. Van Vleck, L. D. and J. P. Cassady. 2005. Unexpected variance components with a true model containing genetic competitive effects. J. Anim. Sci. 83:68-74. https://doi.org/10.2527/2005.83168x
  38. Caballero, A., E. Santiago and M. A. Toro. 1996. Systems of mating to reduce inbreeding in selected populations. Anim. Sci. 62:431-442. https://doi.org/10.1017/S1357729800014971
  39. Henderson, C. R. 1949. Estimation of changes in herd environment. J. Dairy Sci. 32:709.
  40. Rohrer, G. A. and J. Keele. 1998. Identification of quantitative trait loci affecting carcass composition in swine. II. Muscling and wholesale product yield traits. J. Anim. Sci. 76:2255-2262. https://doi.org/10.2527/1998.7692255x
  41. Gimelfarb, A. and R. Lande. 1994. Simulation of marker-assisted selection in hybrid populations. Genet. Res. 63:39-47. https://doi.org/10.1017/S0016672300032067
  42. Grundy, B., A. Caballero, E. Santiago and W. G. Hill. 1994. A note on using biased parameter values and non-random mating to reduce rate of inbreeding in selection programmes. Anim. Prod. 59:465-468. https://doi.org/10.1017/S0003356100008011
  43. Weigel, K. A. 2001. Controlling inbreeding in modern breeding programs. J. Dairy Sci. 84 (E. Supp.): E177-E184. http://www.adsa.org/jds/papers/2001/jds_es177.pdf https://doi.org/10.3168/jds.S0022-0302(01)74467-0
  44. Berg, R. T. and L. E. Walters. 1983. The meat animal: Changes and challenges. J. Anim. Sci. 57(Supp. 2):133-146.
  45. Dunnington, E. A. and P. B. Siegel. 1996. Long-term divergent selection for eight-week body weight in White Plymouth Rock chickens. Poult. Sci. 75:1168-1179. https://doi.org/10.3382/ps.0751168
  46. Eisen, E. J., J. P. Hanrahan and J. E. Legates. 1973. Effects of population size and selection intensity on correlated responses to selection for postweaning gain in mice. Genet. 74:157-170.
  47. A. C., A. M. Lawler and S. J. Lee. 1997. Regulation of skeletal muscle mass in mice by a new $TGF-{\beta}$ superfamily member. Nature (Lond.) 387:83-90 https://doi.org/10.1038/387083a0
  48. Yonash, N., H. H. Cheng, J. Hillel, D. E. Heller and A. Cahaner. 2001. DNA microsatellites linked to quantitative trait loci affecting antibody response and survival rate in meat-type chickens. Poult. Sci. 80:22-28. https://doi.org/10.1093/ps/80.1.22
  49. Havenstein, G. B., P. R. Ferket, S. E. Schneideler and B. T. Larson. 1994. Growth, livability and feed conversion of 1957 vs. 1991 broilers when fed "Typical" 1957 and 1991 broiler diets. Poult. Sci. 73:1785-1794. https://doi.org/10.3382/ps.0731785
  50. Lange, C. and J. C. Whittaker. 2001. On prediction of genetic values in marker-assisted selection. Genet. 159:1375-1381.
  51. Smith, C. 1998. Introduction: Current animal breeding. In Animal Breeding Technology for the 21st Century (Ed. A. J. Clark). Harwood, Amsterdam, pp. 1-10.
  52. Dekkers, J. C. M. and F. Hospital. 2002. The use of molecular genetics in the improvement of agricultural populations. Nature Rev. Genet. 3:22-32. https://doi.org/10.1038/nrg701
  53. Quinton, M. A., C. Smith and M. E. Goddard. 1992. Comparison of selection methods at the same level of inbreeding. J. Anim. Sci. 70:1060-1067 https://doi.org/10.2527/1992.7041060x
  54. Stone, R. T., J. W. Keele, S. D. Shackelford, S. M. Kappes and M. Koohmaraie. 1999. A primary screen of bovine genome for quantitative trait loci affecting carcass and growth traits. J. Anim. Sci. 77:1379-1384. https://doi.org/10.2527/1999.7761379x
  55. McPherron, A. C. and S. J. Lee. 1997. Double-muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. USA 94:12457-12461. https://doi.org/10.1073/pnas.94.23.12457
  56. Tatsuda, K. and K. Fujinaka. 2001. Genetic mapping of the QTL affecting body weight in chickens using a $F_2$ family. Br. Poult. Sci. 42:333-337. https://doi.org/10.1080/00071660120055296
  57. Weller, J. I. 2001. Quantitative Trait Loci in Animals. CAB International, Oxon.
  58. Haley, C. S. and P. M. Visscher. 1998. Strategies to utilize marker- QTL associations. J. Dairy Sci. 81(Supp. 2):85-97. https://doi.org/10.3168/jds.S0022-0302(98)70157-2
  59. Robeson, B. L., E. J. Eisen and J. M. Leatherwood. 1981. Adipose cellularity, serum glucose, insulin and cholesterol in polygenic obese mice fed high-fat or high-carbohydrate diets. Growth 45:198-215.
  60. Soller, M. and I. Medjugorac. 1999. A successful marriage: Making the transition from quantitative trait locus mapping to marker-assisted selection. In From Jay Lush to Genomics: Visions for Animal Breeding and Genetics (Ed. J. C. M. Dekkers, S. J. Lammond and M. F. Rothschild). Iowa State University, Ames, Iowa, pp. 85-96.
  61. Craig, J. V. 1982. Behavioral and genetic adaptation of laying hens to high-density environments. Biosci. 32:33-37. https://doi.org/10.2307/1308752
  62. Muir, W. M. 2000. The interaction of selection intensity, inbreeding depression, and random genetic drift on short-term and long-term response to selection: Results using finite locus and finite population size models incorporating directional dominance. Proc. Amer. Soc. Anim. Sci. http://www.asas.org/0602.pdf.
  63. Peripato, A. C., R. A. de Brito, T. T. Vaughn, L. S. Pletscher, S. R. Matioli and J. M. Cheverud. 2002. Quantitative trait loci for maternal performance for offspring survival in mice. Genet. 162:1341-1353.
  64. Verrier, E., J. J. Colleau and J. L. Foulley. 1993. Long-term effects of selection based on the animal model BLUP in a finite population. Theor. Appl. Genet. 87:446-454.
  65. Odum, T. W. 1993. Ascites syndrome: Overview and update. Poult. Digest 52:14-22
  66. Georges, M. and J. M. Massey. 1991. Velogenetics, or synergistic use of marker-assisted selection and germ-line manipulation. Theriogenol. 35:151-159. https://doi.org/10.1016/0093-691X(91)90154-6
  67. Whittaker, J. C. 2001. Marker-assisted selection and introgression. In Handbook of Statistical Genetics (Ed. D. J. Balding, M. Bishop and C. Cannings). John Wiley and Sons, Chichester, pp. 673-693.
  68. Kambadur, R., M. Sharma, T. P. L. Smith and J. J. Bass. 1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 7:910-915. https://doi.org/10.1101/gr.7.9.910
  69. Meuwissen, T. H. E. and M. E. Goddard. 1996. The use of marker haplotypes in animal breeding schemes. Genet. Sel. Evol. 28:161-176. https://doi.org/10.1186/1297-9686-28-2-161
  70. Muir, W. M. and A. Schinckel. 2002. Incorporation of competitive effects in breeding programs to improve productivity and animal welfare. Proc. 7th World Cong. Genet. Appl. Livest. Prod. 32:35-38.
  71. Muir, W. M. 2005. Incorporation of competitive effects in forest tree or animal breeding programs. Genet. 170:1247-1259. https://doi.org/10.1534/genetics.104.035956
  72. Santiago, E. and A. Caballero. 1995. Effective size of populations under selection. Genet. 139:1013-1030.
  73. Henderson, C. R. and R. L. Quass. 1976. Multiple trait evaluation using relatives' records. J. Anim. Sci. 43:1188-1197. https://doi.org/10.2527/jas1976.4361188x
  74. Schrooten, C., H. Bovenhuis, W. Coppieters and J. A. M. Van Arendonk. 2000. Whole genome scan to detect quantitative trait loci for conformation and functional traits in dairy cattle. J. Dairy Sci. 83:795-806. https://doi.org/10.3168/jds.S0022-0302(00)74942-3
  75. Griffing, B. 1967. Selection in reference to biological groups. I. Individual and group selection applied to populations of unordered groups. Aust. J. Biol. Sci. 10:127-139.
  76. Kanis, E., K. H. De Greef, A. Hiemstra and J. A. M. van Arendonk. 2005. Breeding for societally important traits in pigs. J. Anim. Sci. 83:948-957. https://doi.org/10.2527/2005.834948x
  77. Malek, M., J. C. M. Dekkers, H. K. Lee, T. J. Bass and M. F. Rothschild. 2001. A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. I. Growth and body composition. Mamm. Genome. 12:630-636. https://doi.org/10.1007/s003350020018
  78. Yancovich, A., I. Levin, A. Cahaner and J. Hillel. 1996. Introgression of the avian naked neck gene assisted by DNA fingerprints. Anim. Genet. 27:149-156. https://doi.org/10.1111/j.1365-2052.1996.tb00942.x
  79. Charlier, C., W. Coppetiers, F. Farnir, L. Grobart, P. L. Leroy, C. Michaux, M. Mni, A. Schwers, P. Vanmanshoven, R. Hanset and M. Georges. 1995. The mh gene causing double-muscling in cattle maps to bovine chromosome 2. Mamm. Genome. 6:788-792. https://doi.org/10.1007/BF00539005
  80. Eisen, E. J. 1998. Selection theory and experiments. Proc. 6th World Congr. Genet. Appl. Livest. Prod. 26:67-68.
  81. Scholtz, M. M., C. Z. Roux and S. J. Schoeman. 1990. An investigation into the consequences of selection for growth, size and efficiency. S. Afr. J. Anim. Sci. 20:170-173.
  82. Holl, J. W., J. P. Cassady, D. Pomp and R. K. Johnson. 2004. A genome scan for quantitative trait loci and imprinted regions affecting reproduction in pigs. J. Anim. Sci. 82:3421-3429. https://doi.org/10.2527/2004.82123421x
  83. Muir, W. M. 1996. Group selection for adaptation to multiple-hen cages: Selection program and direct responses. Poult. Sci. 75:447-458. https://doi.org/10.3382/ps.0750447
  84. Fairfull, R. W., I. M. McMillan and W. M. Muir. 1998. Poultry breeding: Progress and prospects for genetic improvement of egg and meat production. Proc. 6th World Congr. Genet. Appl. Livest. Prod. 24:271-278.
  85. Hohenboken, W. D. 1998. Physiological limits to selection in beef and dairy cattle: Evidence and expectations from different sources. Proc. 35th Meeting of Sociedade Brasileire de Zootecnia, pp. 371-397.
  86. Smith, L. A., B. G. Cassell and R. E. Pearson. 1998. The effects of inbreeding in the lifetime production of dairy cattle. J. Dairy Sci. 81:2729-2737. https://doi.org/10.3168/jds.S0022-0302(98)75830-8

Cited by

  1. Contribuição genética ótima aplicada à seleção de ovinos Santa Inês vol.51, pp.6, 2016, https://doi.org/10.1590/S0100-204X2016000600006