DOI QR코드

DOI QR Code

Association of SNP Marker in the Thyroglobulin Gene with Carcass and Meat Quality Traits in Korean Cattle

  • Shin, S.C. (Division of Animal Science and Resources, College of Life Science and Natural Resources Sangji University) ;
  • Chung, E.R. (Division of Animal Science and Resources, College of Life Science and Natural Resources Sangji University)
  • 투고 : 2006.04.07
  • 심사 : 2006.08.22
  • 발행 : 2007.02.01

초록

Thyroid hormones play an important role in regulating metabolism and can affect homeostasis of fat depots. The gene encoding thyroglobulin (TG), producing the precursor for thyroid hormones, has been proposed as a positional and functional candidate gene for a QTL with an effect on fat deposition. The SNP occurs in the 5' promoter region of the TG gene and is widely used in marker assisted selection (MAS) programs to improve the predictability of marbling level and eating quality in beef cattle. In this study, we identified three SNPs at the 5' promoter region of the TG gene in Korean cattle. Of the three SNPs identified in TG gene, the C257T and A335G were previously unreported new SNPs. The sequence data were submitted to GenBank (GenBank accession number: AY615525). The previously reported C422T SNP showed three genotypes, CC, CT and TT, by digestion with the restriction enzyme MflI using the PCR-RFLP method. A new allelic variant corresponding to the C${\rightarrow}$T and A${\rightarrow}$G mutations at positions 257 and 335, respectively, could be detected by the SSCP analysis. The gene-specific SNP marker association analysis indicated that the C422T SNP marker was significantly associated (p<0.05) with marbling score. Animals with the CC and CT genotypes had higher marbling score than those with the TT genotype. Results from this study suggest that TG gene-specific SNP may be a useful marker for meat quality traits in future MAS programs in Korean cattle.

키워드

TG Gene;SNP Marker;Marbling Score;Korean Cattle

과제정보

연구 과제 주관 기관 : Rural Development Administration

참고문헌

  1. De, S., M. D. MacNeil, X. L. Wu, J. J. Michal, Q. J. Xiao, M. D. Garcia, K. B. Griffin, C. T. Gaskins, J. J. Reeves, J. R. Busboom, R. W. Wright Jr. and Z. Jiang. 2004. Detection of quantitative trait loci for marbling and backfat in Wagyu $\times$Limousin F2 crosses using a candidate gene approach. In: Proceedings of the Western Section, American Society of Animal Science, 55:95-98.
  2. Mears, G. J., P. S. Mir, D. R. C. Bailey and S. D. M. Jones. 2001. Effect of Wagyu genetics on marbling, backfat, and circulating hormones in cattle. Can. J. Anim. Sci. 81:6573.
  3. Smas, C. M. and H. S. Sul. 1995. Control of adipocyte differentiation. Biochem. J. 309:697-710. https://doi.org/10.1042/bj3090697
  4. Meuwissen, T. H. E. and M. E. Goddard. 1996. The use of marker haplotypes in animal breeding schemes. Genet. Sel. Evol. 28:161-177. https://doi.org/10.1186/1297-9686-28-2-161
  5. Barendse, W. 1999. Assessing lipid metabolism. International patent application PCT/AU98/00882, international patent publication WO 99/23248.
  6. Ailhaud, G., P. Grimaldi and R. Negrel. 1992. Cellular and molecular aspects of adipose tissue development. An. Rev. Nutr. 12:207-233. https://doi.org/10.1146/annurev.nu.12.070192.001231
  7. Thaller, G., C. Kuhn, A. Winter, G.. Ewald, O. Bellmann, J. Wegner, H. Zuhlke and R. Fries. 2003. DGAT1, a new positional and functional candidate gene for intramuscular fat deposition in cattle. Anim. Genet. 34:354-357. https://doi.org/10.1046/j.1365-2052.2003.01011.x
  8. Grisart, B., W. Coppieters, F. Farnir, L. Karim, C. Ford, P. Berzi, N. Cambisano, M. Mni, S. Reid, P. Simon, R. Spelman, M. Georges and R. Snell. 2001. Positional candidate cloning of a QTL in dairy cattle: Identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome. Res. 12:222-231. https://doi.org/10.1101/gr.224202
  9. Rincker, C. B., N. A. Pyatt, L. L. Berger and D. B. Faulkner. 2006. Relationship among GeneSTAR marbling marker, intramuscular fat deposition, and expected progeny differences in early weaned Simmental steers. J. Anim. Sci. 84:686-693. https://doi.org/10.2527/2006.843686x
  10. Burrell, D. N., G. H. D. Moser, J. Hetzel, Y .S. S. Mizoguchi, T. K. S. Hirano, Y. S. K. Z. Sugimoto and K. R. Mengersen. 2004. Meta analysis confirms associations of the TG5 thyroglobulin polymorphism with marbling in beef cattle. 29th International Conference on Animal Genetics ISAG 2004/TOKYO P.135.
  11. Ge, W., M. E. Davis, H. C. Hines, K. M. Irvin and R. C. M. Simmen. 2003. Association of single nucleotide polymorphisms in the growth hormone and growth hormone receptor genes with blood serum insulin-like growth factor I concentration and growth traits in Angus cattle. J. Anim. Sci. 81:641-648. https://doi.org/10.2527/2003.813641x
  12. Barendse, W., R. Bunch, M. Thomas, S. Armitage, S. Baud and N. Donaldson. 2001. The TG5 DNA marker test for marbling capacity in Australian feedlot cattle. Available at: www.Beef.crc.org.au/Publications/LatestPublications/feeder20 02/session6/6a.html. accessed: March 9, 2003
  13. Stone, R. T., E. Casas, T. P. Smith, J. W. Keele, G. Harhay, G. L. Bennett, M. Koohmaraie, T. L. Wheeler, S. D. Shackelford and W. M. Snelling. 2005. Identification of genetic markers for fat deposition and meat tenderness on bovine chromosome 5: Development of a low-density single nucleotide polymorphism map. J. Anim. Sci. 83:2280-2288. https://doi.org/10.2527/2005.83102280x
  14. Chung, E. R. and W. T. Kim. 2005. Association of SNP marker in IGF-I and MYF5 candidate genes with growth traits in Korean cattle. Asian-Aust. J. Anim. Sci. 18:1061-1065. https://doi.org/10.5713/ajas.2005.1061
  15. Casas, E., S. N. White, D. G. Riley, T. P. L. Smith, R. A. Brenneman, T. A. Olson, D. D. Johnson, S. W. Coleman, G.. L. Bennett and C. C. Chase, Jr. 2005. Assessment of single nucleotide polymorphisms in genes residing on chromosomes 14 and 29 for association with carcass composition trait in Bos indicus cattle. J. Anim. Sci. 83:13-19. https://doi.org/10.2527/2005.83113x
  16. Darimont, C., D. Gaillard, G. Aihaud and R. Negrel. 1993. Terminal differentiation of mouse preadipocyte cells: adipogenisis and antimitogenic role of triiodothyronine. Mol. Cell Endocrinol. 98:67-73. https://doi.org/10.1016/0303-7207(93)90238-F
  17. Casas, E., S. D. Shackelford, J. W. Keele, R. T. Stone, S. M. Kappes and M. Koohmaraie. 2000. Quantitative trait loci affecting growth and carcass composition of cattle segregating alternate forms of myostatin. J. Anim. Sci. 78:560-569. https://doi.org/10.2527/2000.783560x
  18. Moore, S. S., C. Li, J. Basarab, W. M. Snelling, J. Kneeland, B. Murdoch, C. Hansen and B. Benkel. 2003. Fine mapping of quantitative trait loci and assessment of positional candidate genes for backfat on bovine chromosome14 in a commercial line of Bos Taurus. J. Anim. Sci. 81:1919-1925. https://doi.org/10.2527/2003.8181919x

피인용 문헌

  1. Association of polymorphisms in the leptin and thyroglobulin genes with meat quality and carcass traits in beef cattle vol.41, pp.10, 2012, https://doi.org/10.1590/S1516-35982012001000004
  2. Exploring evidence of positive selection reveals genetic basis of meat quality traits in Berkshire pigs through whole genome sequencing vol.16, pp.1, 2015, https://doi.org/10.1186/s12863-015-0265-1
  3. Effect of thyroglobulin gene polymorphisms on growth, carcass composition and meat quality traits in Chinese beef cattle vol.42, pp.9, 2015, https://doi.org/10.1007/s11033-015-3919-1