Characterization of the Complete Mitochondrial Genome of Diphyllobothrium nihonkaiense (Diphyllobothriidae: Cestoda), and Development of Molecular Markers for Differentiating Fish Tapeworms

  • Kim, Kyu-Heon (Korea Food and Drug Administration) ;
  • Jeon, Hyeong-Kyu (Department of Parasitology and Medical Research Institute, College of Medicine, Chungbuk National University) ;
  • Kang, Seokha (Department of Parasitology and Medical Research Institute, College of Medicine, Chungbuk National University) ;
  • Sultana, Tahera (Department of Parasitology and Medical Research Institute, College of Medicine, Chungbuk National University) ;
  • Kim, Gil Jung (Faculty of Marine Bioscience and Technology, Kangnung National University) ;
  • Eom, Keeseon S. (Department of Parasitology and Medical Research Institute, College of Medicine, Chungbuk National University) ;
  • Park, Joong-Ki (Department of Parasitology and Medical Research Institute, College of Medicine, Chungbuk National University)
  • Received : 2007.02.14
  • Accepted : 2007.03.29
  • Published : 2007.06.30

Abstract

We sequenced and characterized the complete mitochondrial genome of the Japanese fish tapeworm D. nihonkaiense. The genome is a circular-DNA molecule of 13607 bp (one nucleotide shorter than that of D. latum mtDNA) containing 12 protein-coding genes (lacking atp8), 22 tRNA genes and two rRNA genes. Gene order and genome content are identical to those of the other cestodes reported thus far, including its congener D. latum. The only exception is Hymenolepis diminuta in which the positions of trnS2 and trnL1 are switched. We tested a PCR-based molecular assay designed to rapidly and accurately differentiate between D. nihonkaiense and D. latum using species-specific primers based on a comparison of their mtDNA sequences. We found the PCR-based system to be very reliable and specific, and suggest that PCR-based identification methods using mtDNA sequences could contribute to the study of the epidemiology and larval ecology of Diphyllobothrium species.

Keywords

Cestoda;Diphyllobothrium nihonkaiense;Mitochondrial Genome;Multiplex PCR;Pseudophyllidea

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Crompton, D. W. T. (1999) How much human helminthiasis is there in the world? J. Parasitol. 85, 397-403 https://doi.org/10.2307/3285768
  2. Emmel, V. E., Inamine, E., Secchi, C., Brodt, T. C. Z., Amaro, M. C. O., et al. (2006) Diphyllobothrium latum: case report in Brazil. Rev. Soc. Bras. Med. Trop. 39, 82-84 https://doi.org/10.1590/S0037-86822006000100017
  3. Fukumoto, S., Yazaki, S., Maejima, J., Kamo, H., Takao, Y., et al. (1988) The first report of human infection with Diphyllobothrium scoticum (Rennie et Reid, 1912). Jpn. J. Parasitol. 37, 84-90
  4. Jeon, H. K., Kim, K.-H., Park, J.-K., Eom, K. S., Chai, J. Y., et al. (2003) Dominance of Diphyllobothrium nihonkaiense (Family Diphyllobothriidae) inferred from the nucleotide sequences of ribosomal ITS1 and mtCox1 in Korea. The 45th annual meeting of the Korean Society for Parasitology (2003)
  5. Johnston, D. A. (2006) Genomes and genomics of parasitic flatworms. in Parasitic Flatworms: Molecular Biology, Biochemistry, Immunology and Physiology, Maule, A. G. and Marks, N. J. (eds.), pp. 37-80. CAB International, Wallingford, Oxford
  6. Littlewood, D. T. J., Lockyer, A. E., Webster, B. L., Johnston, D. A., and Le, T. H. (2006) The complete mitochondrial genomes of Schistosoma haematobium and Schistosoma spindale and the evolutionary history of mitochondrial genome changes among parasitic flatworms. Mol. Phylogenet. Evol. 39, 452-467 https://doi.org/10.1016/j.ympev.2005.12.012
  7. Park, J.-K., Kim, K.-H., Kang, S., Kim, W., Eom, K. S., et al. (2007a) A common origin of complex life cycles in parasitic flatworms: evidence from the complete mitochondrial genome of Microcotyle sebastis (Monogenea: Platyhelminthes). BMC Evol. Biol. 7, 11
  8. Yamane, Y., Shiwaku, K., Fukushima, T., Isobe, A., Yoneyama, T., et al. (1996) The recent situation of diphyllobothriasis in Japan: Epidemiology, taxonomy and clinical features. Proceeding of 2nd Japan-Korea Parasitologists. Seminar (Forum Cheju-2). 74-78
  9. Herbeck, J. T. and Novembre, J. (2003) Codon usage patterns in cytochrome oxidase I across multiple insect orders. J. Mol. Evol. 56, 691-701 https://doi.org/10.1007/s00239-002-2437-7
  10. Olson, D. P., Littlewood, D. T. J., Bray, R. A., and Mariaux, J. (2001) Interrelationships and evolution of the tapeworms (Platyhelminthes: Cestoda). Mol. Phylogenet. Evol. 19, 443-467 https://doi.org/10.1006/mpev.2001.0930
  11. Von Nickisch-Rosenegk, M., Brown, W. M., and Boore, J. L. (2001) Complete sequence of the mitochondrial genome of the tapeworm Hymenolepis diminuta: gene arrangements indicate that Platyhelminths are Eutrochozoans. Mol. Biol. Evol. 18, 721-830 https://doi.org/10.1093/oxfordjournals.molbev.a003854
  12. Lim, J. T. and Hwang, U. W. (2006) The complete mitochondrial genome of Pollicipes mitella (Crustacea, Maxillopoda, Cirripedia): non-monophylies of Maxillopoda and Crustacea. Mol. Cells 22, 314-322
  13. Boore, J. L. (1999) Animal mitochondrial genomes. Nucleic Acids Res. 27, 1767-1780 https://doi.org/10.1093/nar/27.8.1767
  14. Saccone, C., De Giorgi, C., Gissi, C., Pesole, G., and Reyes, A. (1999) Evolutionary genomics in Metazoa: the mitochondrial DNA as a model system. Gene 238, 195-209 https://doi.org/10.1016/S0378-1119(99)00270-X
  15. Le, T. H., McManus D. P., and Blair, D. (2004) Codon usage and bias in mitochondrial genomes of parasitic platyhelminthes. Korean J. Parasitol. 42, 159-167 https://doi.org/10.3347/kjp.2004.42.4.159
  16. Yamane, Y., Kamo, H., Bylund, G., and Wikgrenn, B.-J. P. (1986) Diphyllobothrium nihonkaiense sp. nov. (Cestoda: Diphyllobothriidae)- revised identification of Japanese broad tapeworm. Shimane J. Med. Sci. 10, 29-48
  17. Clayton, D. A. (1982) Replication of animal mitochondrial DNA. Cell 28, 693-705 https://doi.org/10.1016/0092-8674(82)90049-6
  18. Jeon, H. K., Lee, K. H., Kim, K. H., Hwang, U. W., and Eom, K. S. (2005) Complete sequence and structure of the mitochondrial genome of the human tapeworm, Taenia asiatica (Platyhelminthes; Cestoda). Parasitology 130, 717-726 https://doi.org/10.1017/S0031182004007164
  19. Boore, J. L. and Brown, W. M. (2000) Mitochondrial genomes of Galathealinum, Helobdella, and Platynereis: sequence and gene arrangement comparisons indicate that Pogonophora is not a phylum and Annelida and Arthropoda are not sister taxa. Mol. Biol. Evol. 17, 87-106 https://doi.org/10.1093/oxfordjournals.molbev.a026241
  20. Mariaux, J. (1998) A molecular phylogeny of the Eucestoda. J. Parasitol. 84, 114-124 https://doi.org/10.2307/3284540
  21. Nakao, M., Yokoyama, N., Sako, Y., Fukunaga, M., and Ito, A. (2002) The complete mitochondrial DNA sequence of the cestode Echinococcus multilocularis (Cyclophyllidea: Taeniidae). Mitochondrion 1, 497-509 https://doi.org/10.1016/S1567-7249(02)00040-5
  22. Saito, S., Tamura, K., and Atosuka, T. (2005) Replication origin of mitochondrial DNA in insects. Genetics 171, 1695-1705 https://doi.org/10.1534/genetics.105.046243
  23. Adachi, J. and Hasegawa, M. (1996) Model of amino acid substitution in proteins encoded by mitochondrial DNA. J. Mol. Evol. 42, 459-468 https://doi.org/10.1007/BF02498640
  24. Ando, K., Ishikura, K., Nakakugi, T., Shimono, Y., Tamai, T., et al. (2001) Five cases of Diphyllobothrium nihonkaiense infection with discovery of plerocercoids from an infective source, Oncorhynchus masou Ishikawae. J. Parasitol. 87, 96-100 https://doi.org/10.1645/0022-3395(2001)087[0096:FCODNI]2.0.CO;2
  25. Gjetvaj, B., Cook, D. I., and Zouros, E. (1992) Repeated sequences and large-scale size variation of mitochondrial DNA: a common feature among scallops (Bivalvia: Pectinidae). Mol. Biol. Evol. 9, 106-124
  26. Park, J.-K., Kim, K.-H., Kang, S., Jeon, H. K., Littlewood, D. T. J., et al. (2007b) Characterization of the mitochondrial genome of Diphyllobothrium latum (Cestoda: Pseudophyllidea)-implication for the phylogeny of eucestodes. Parasitology 134, 749-759 https://doi.org/10.1017/S003118200600206X
  27. Schmidt, H. A., Strimmer, K., Vingron, M., and von Haeseler, A. (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18, 502-504 https://doi.org/10.1093/bioinformatics/18.3.502
  28. Nakao, M., Abmed, D., Yamasaki, H., and Ito, A (2007) Mitochondrial genomes of the human broad tapeworms Diphyllobothrium latum and Diphyllobothrium nihonkaiense (Cestoda: Diphyllobothriidae). Parasitol. Res. 101, 233-236
  29. Després, L., Imbert-Establet, D., and Monnerot, M. (1993). Molecular characterization of mitochondrial DNA provides evidence for the recent introduction of Schistosoma mansoni into America. Mol. Biochem. Parasitol. 60, 221-230 https://doi.org/10.1016/0166-6851(93)90133-I
  30. Hoberg, E. P., Mariaux, J., Justine, J.-L., Brooks, D. R., and Weekes, P. J. (1997) Phylogeny of the orders of the Eucestoda (Cercomeromorphae) based on comparative morphology: historical perspectives and a new working hypothesis. J. Parasitol. 83, 1128-1147 https://doi.org/10.2307/3284374
  31. Stadlbauer, V., Haberl, R., Langner, C., Krejs, G. J., and Eherer, A. (2005) Annoying vacation souvenir: Fish tapeworm (Diphyllobothrium sp.) infestation in an Australian fisherman. Wien. Klin. Wochenschr. 117, 776-779 https://doi.org/10.1007/s00508-005-0463-3
  32. Le, T. H., Pearson, M. S., Blair, D., Dai, N., Zhang, L. H., et al. (2002b) Complete mitochondrial genomes confirm the distinctiveness of the horse-dog and sheep-dog strains of Echinococcus granulosus. Parasitology 124, 97-112
  33. Brooks, D. R., Hoberg, E. P., and Weekes, P. J. (1991) Preliminary phylogenetic systematic analysis of the major lineages of the Eucestoda (Platyhelminthes: Cercomeria). Proc. Biol. Soc. Wash. 104, 651-668
  34. Le, T. H., Blair, D., Agatsuma, T., Humair, P.-F., Campbell, N. J. H., et al. (2000b) Phylogenies inferred from mitochondrial gene orders-a cautionary tale from the parasitic flatworms. Mol. Biol. Evol. 17, 1123-1125 https://doi.org/10.1093/oxfordjournals.molbev.a026393
  35. Wolstenholme, D. R. (1992) Animal mitochondrial DNA: structure and evolution. Int. Rev. Cytol. 141, 173-216 https://doi.org/10.1016/S0074-7696(08)62066-5
  36. Swofford, D. L. (2002) PAUP*: Phylogenetic analysis using parsimony (*and other methods) version 4.0b10. Sinauer Associates, Sunderland, Massachusetts
  37. Lowe, T. and Eddy, S. R. (1997) tRNAscan-SE: a program improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955-964 https://doi.org/10.1093/nar/25.5.955
  38. Andersen, K. I. and Gibson, D. I. (1989) A key to three species of laval Diphyllobothrium Cobbold, 1859 (Cestoda: Pseudophyllidea) occurring in European and North American freshwater fishes. Syst. Parasitol. 13, 3-9 https://doi.org/10.1007/BF00006946
  39. Cox, F. E. G. (2002) History of human parasitology. Clin. Microbiol. Rev. 15, 595-612 https://doi.org/10.1128/CMR.15.4.595-612.2002
  40. Waloch, M. (2005) Cestode infections in Poland in 2003. Przegl. Epidemiol. 59, 331-335
  41. Le, T. H., Blair, D., and McManus D. P. (2002a) Mitochondrial genomes of parasitic flateworms. Trends Parasitol. 18, 206-213 https://doi.org/10.1016/S1471-4922(02)02252-3
  42. Le, T. H., Blair, D., and McManus, D. P. (2000a) Mitochondrial DNA sequences of human schistosomes: the current status. Int. J. Parasitol. 30, 283-290 https://doi.org/10.1016/S0020-7519(99)00204-0
  43. Yera, H., Estran, C., Delaunay, P., Gari-Toussaint, M., Dupouy- Camet, J., et al. (2006) Putative Diphyllobothrium nihonkaiense acquired from a Pacific salmon (Oncorhynchus keta) eaten in France; genomic identification and case report. Parasitol. Int. 55, 45-49 https://doi.org/10.1016/j.parint.2005.09.004
  44. Nakao, M., Sako, Y., and Ito, A. (2003) The mitochondrial genome of the tape worm Taenia solium: a finding of the abbreviated stop codon U. J. Parasitol. 89, 633-635 https://doi.org/10.1645/0022-3395(2003)089[0633:TMGOTT]2.0.CO;2