Development of electrochemical biosensor for determination of galactose

4갈락토오즈 측정을 위한 전기화학적 바이오센서 개발

  • Park, Kap Soo (Department of Chemistry, Kwangwoon University) ;
  • Cho, Soon Sam (Department of Chemistry, Kwangwoon University) ;
  • Quan, De (Department of Chemistry, Kwangwoon University) ;
  • Lee, Jae Seon (Department of Chemistry, Kwangwoon University) ;
  • Cha, Geun Sig (Department of Chemistry, Kwangwoon University) ;
  • Nam, Hakhyun (Department of Chemistry, Kwangwoon University)
  • 박갑수 (광운대학교 자연과학대학 화학과) ;
  • 조순삼 (광운대학교 자연과학대학 화학과) ;
  • 권덕 (광운대학교 자연과학대학 화학과) ;
  • 이재선 (광운대학교 자연과학대학 화학과) ;
  • 차근식 (광운대학교 자연과학대학 화학과) ;
  • 남학현 (광운대학교 자연과학대학 화학과)
  • Received : 2007.05.30
  • Accepted : 2007.08.16
  • Published : 2007.10.25

Abstract

In principle, the blood galactose level may be determined conveniently with a strip-type biosensor similar to that for glucose. In this study, we describe the development of a disposable galactose biosensor strip for point-of-care testing. The sensor strip is constructed with screen-printed carbon paste electrode (SPCE) and sample amount (< $100{\mu}L$). The developed strip the galactose level in less than 90 s using bienzymatic system of galactose oxidase (GAO) and horseradish peroxidase (HRP). The effects of pH, mediator (1,1-ferrocenedimethanol) concentration, ratio of enzymes, and applied potential were determined preliminarily with glassy carbon electrodes, and optimized further with the strip-type electrodes. The sensor exhibits linear response in the range of $0{\sim}400{\mu}M$ ($r^2$ = 0.997, S/N = 3). Since a low working potential, in principle, the fabricated disposable galactose biosensor has -100 mV (vs. Ag/AgCl), it is applied for the detection of galactose, interfering responses from common interferents such as ascorbic acid, uric acid and acetaminophen could be minimized. The sensor has been used to determine the total galactose level in standard samples with satisfactory reproducibility (CV = 5 %).

Acknowledgement

Supported by : 교육인적자원부

References

  1. T. Podskarbi, J. Reichardt and Y. S. Shin, J. Inherited Metab. Dis., 17, 149-150 (1994) https://doi.org/10.1007/BF00735422
  2. M. Gabrielli. Clin. Chem., 24(11), 1990-1995 (1978)
  3. G. Buffone, J. Johnson, S. Lewis and J. Sparks. Clin. Chem., 26(2), 339-340 (1980)
  4. J. M. Dicks, W. J. Aston, G. Davis and A. P. F. Turner, Anal. Chim. Acta, 182, 103-112 (1986) https://doi.org/10.1016/S0003-2670(00)82441-1
  5. P. Stoecker, P. Manowitz, R. Harvey and A. Yacynych, Anal. Biochem., 258, 103-108 (1998) https://doi.org/10.1006/abio.1998.2577
  6. S. Mannino, M. S. Cosio and S. Buratti, Ital. J. Food Sci., 11(1), 57-65 (1999)
  7. M. Smolander, L. Gorton and G. Marko-Varga, Anal. Chim. Acta, 302, 233-240 (1995) https://doi.org/10.1016/0003-2670(94)00469-3
  8. G. Mason, G. Summer, H. Dutton and R. Schwaner, Clin. Chem., 23(6), 971-974 (1977)
  9. M. Pesce and S. Bodourian, Clin. Chem., 28(2), 301-305 (1982)
  10. E. Szabo, N. Adnyi and M. Váradi, Biosens. Bioelectron, 11(10), 1051-1058 (1996) https://doi.org/10.1016/0956-5663(96)87664-0
  11. M. Fortelius and P. Mattjus, Chem. Phys. Lipids, 142, 103-110 (2006) https://doi.org/10.1016/j.chemphyslip.2006.03.007
  12. T. Yao and K. Takashima, Biosens. Bioelectron, 13(1), 67-73 (1998) https://doi.org/10.1016/S0956-5663(97)00076-6
  13. H. Gulce, I. Ataman, A. Gülce and A. Ylldlz, Enzyme Microb. Tech., 30, 41-44 (2002). https://doi.org/10.1016/S0141-0229(01)00452-5
  14. S. Segal, 'The Metabolic Basis of Inherited Disease', 6th ed., McGraw-Hill Book Co., New York, U.S.A., 1989
  15. A. Fujimoto, Y. Okano, T. Miyagi, G. Isshiki and T. Oura, Clini. Chem., 46(6), 806-810 (2000)
  16. F. Vega, C. Nunez, B. Weigel, B. Hitzmann and J. Diaz Ricci, Anal. Chim. Acta, 373, 57-62 (1998) https://doi.org/10.1016/S0003-2670(98)00389-4
  17. J. Tk, M. Navrtil, E. turdk and P. Gemeiner, Enzyme Microb. Tech., 28, 383-388 (2001) https://doi.org/10.1016/S0141-0229(00)00328-8
  18. J. Henderson and F. Fales. Clin. Chem., 26(2), 282-285 (1980)
  19. P. Schadewaldt, H. Hammen, K. Loganathan, A. Bodner and U. Wendel, Clin. Chem., 46(5), 612-619 (2000)
  20. J. Tk, P. Gemeiner and E. turdk, Biotech. Tech., 13, 931-936 (1999) https://doi.org/10.1023/A:1008966413722
  21. D. Schumacher, J. Vogel and U. Lerche, Biosens. Bioelectron, 9, 85-90 (1994) https://doi.org/10.1016/0956-5663(94)80098-7
  22. S. Segal, G. Berry, C. Scriver, A. Beaudet, W. Sly and D. Vallee, McGraw-Hill, 5, 967-1000 (1995)
  23. J. Tk, I. Vostiar, P. Gemeiner and E. turdk, Bioelectrochemistry, 56, 23-25 (2002) https://doi.org/10.1016/S1567-5394(02)00043-9
  24. L. Coche-Guerente, S. Cosnier, C. Innocent and P. Mailley, Anal. Chim. Acta, 311, 23-30 (1995) https://doi.org/10.1016/0003-2670(95)00178-3
  25. S. Sharma, R. Singhal, B. Malhotra, N. Sehgal and A. Kumar, Electrochim. Acta, 49, 2479-2485 (2004) https://doi.org/10.1016/j.electacta.2004.01.024
  26. P. Manowitz, P. Stoecker and A. Yacyntch, Biosens. Bioelectron, 10, 359-370 (1995) https://doi.org/10.1016/0956-5663(95)96854-R
  27. E. Ekinci and A. Paahan, Eur. Poly. J., 40, 1605-1608 (2004) https://doi.org/10.1016/j.eurpolymj.2004.04.020