Regulation of Blood Glucose Homeostasis during Prolonged Exercise

  • Suh, Sang-Hoon (Laboratory of Sports Physiology and Medicine, Department of Physical Education, Yonsei University) ;
  • Paik, Il-Young (Laboratory of Sports Physiology and Medicine, Department of Physical Education, Yonsei University) ;
  • Jacobs, Kevin A. (Department of Exercise and Sport Sciences, University of Miami)
  • Received : 2007.03.16
  • Accepted : 2007.04.02
  • Published : 2007.06.30

Abstract

The maintenance of normal blood glucose levels at rest and during exercise is critical. The maintenance of blood glucose homeostasis depends on the coordination and integration of several physiological systems, including the sympathetic nervous system and the endocrine system. During prolonged exercise increased demand for glucose by contracting muscle causes to increase glucose uptake to working skeletal muscle. Increase in glucose uptake by working skeletal muscle during prolonged exercise is due to an increase in the translocation of insulin and contraction sensitive glucose transporter-4 (GLUT4) proteins to the plasma membrane. However, normal blood glucose level can be maintained by the augmentation of glucose production and release through the stimulation of liver glycogen breakdown, and the stimulation of the synthesis of glucose from other substances, and by the mobilization of other fuels that may serve as alternatives. Both feedback and feedforward mechanisms allow glycemia to be controlled during exercise. This review focuses on factors that control blood glucose homeostasis during prolonged exercise.

Keywords

Exertion;Glucose Kinetics;Homeostasis;Oxygen Consumption;Training

References

  1. Angus, D. J., Febbraio, M. A., Lasini, D., and Hargreaves, M. (2001) Effect of carbohydrate ingestion on glucose kinetics during exercise in the heat. J. Appl. Physiol. 90, 601-605 https://doi.org/10.1152/jappl.2001.90.2.601
  2. Brooks, G. A. and Donovan, C. M. (1983) Effect of endurance training on glucose kinetics during exercise. Am. J. Physiol. 244, E505-E512
  3. Chen, H. C., Bandyopadhyay, G., Sajan, M. P., Kanoh, Y., Standaert, M., et al. (2002) Activation of the ERK pathway and atypical protein kinase C isoforms in exercise- and aminoimidazole- 4-carboxamide-1-$\beta$-D-riboside(AICAR) stimulated glucose transport. J. Biol. Chem. 277, 23554-23562 https://doi.org/10.1074/jbc.M201152200
  4. Constable, S. H., Favier, R. J., Cartee, G. D., Young, D. A., and Holloszy, J. O. (1988) Muscle glucose transport: interactions of in vitro contractions, insulin and exercise. J. Appl. Physiol. 64, 2329-2332 https://doi.org/10.1152/jappl.1988.64.6.2329
  5. Gollnick, P. D., Piehl, K., and Saltin, B. (1974) Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. J. Physiol. 241, 45-47 https://doi.org/10.1113/jphysiol.1974.sp010639
  6. Goodyear, L. J., Hirshman, M. F., and Horton, E. S. (1991) Exercise- induced translocation of skeletal muscle glucose transporters. Am. J. Physiol. 261, E795-E799
  7. Hayashi, T., Hirshman, M. F., Fujii, N., Habinowski, S. A., Witters, L. A., et al. (2000) Metabolic stress and altered glucose transport. Activation of AMP-activated protein kinase as a unifying coupling mechanism. Diabetes 48, 527-531
  8. Holloszy, J. O. (2003) A forty-year memoir of research on the regulation of glucose transport into muscle. Am. J. Physiol. 284, E453-E467
  9. Ihelemann, J., Galbo, H., and Ploug, T. (1999a) Calphostin C is an inhibitor of contraction, but not insulin-stimulated glucose transport, in skeletal muscle. Acta Physiol. Scand. 167, 69-75 https://doi.org/10.1046/j.1365-201x.1999.00591.x
  10. Kjaer, M., Farrell, P. A., Christensen, N. J., and Galbo, H. (1986) Increased epinephrine response and inaccurate glucoregulation in exercising athletes. J. Appl. Physiol. 61, 1693-1700 https://doi.org/10.1152/jappl.1986.61.5.1693
  11. Lemieux, K., Han, X. X., Dombrowski, L., Bonen, A., and Marette, A. (2000) The transferrin receptor defines two distinct contraction-responsive GLUT4 vesicle population in skeletal muscle. Diabetes 49, 183-189 https://doi.org/10.2337/diabetes.49.2.183
  12. Mu, J., Brozinick, J. T. Jr., Valladares, O., Bucan, M., and Birnbaum, M. J. (2001) A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol. Cell 7, 1085-1094 https://doi.org/10.1016/S1097-2765(01)00251-9
  13. Rose, A. J. and Hargreaves, M. (2003) Exercise increases $Ca^{2+}$/calmodulin-dependent protein kinase II activity in human skeletal muscle. J. Physiol. 553, 303-309 https://doi.org/10.1113/jphysiol.2003.054171
  14. Rose, A. J. and Richer, E. A. (2005) Skeletal muscle glucose uptake during exercise: How is it regulated? Physiol. 20, 260-270 https://doi.org/10.1152/physiol.00012.2005
  15. Sakamoto, K. and Goodyear, L. J. (2002) Invited review: intracellular signaling in contraction skeletal muscle. J. Appl. Physiol. 93, 369-383 https://doi.org/10.1152/japplphysiol.00167.2002
  16. Wahren, J., Felig, P., Ahlborg, G., and Jorfeldt, L. (1971) Glucose Metabolism during leg exercise in man. J. Clin. Invest. 50, 2715-2725 https://doi.org/10.1172/JCI106772
  17. Zinker, B. A., Lacy, D. B., Bracy, D., Jacobs, J., and Wasserman, D. H. (1993) Regulation of glucose uptake and metabolism by working muscle. An in vivo analysis. Diabetes 42, 956-965 https://doi.org/10.2337/diabetes.42.7.956
  18. Jeukendrup, A. E., Raben, A., Gijsen, A., Stegen, J. H., Brouns, F., et al. (1999a) Glucose kinetics during prolonged exercise in highly trained human subjects: effect of glucose ingestion. J. Physiol. 515, 579-589 https://doi.org/10.1111/j.1469-7793.1999.579ac.x
  19. Phillips, S. M., Han, X. X., Green, H. J., and Bonen, A. (1996) Increments in skeletal muscle GLUT-1 and GLUT-4 after endurance training in humans. Am. J. Physiol. 270, E456-E462
  20. Raddatz, D. and Ramadori, G. (2007) Carbohydrate metabolism and the liver: actual aspects from physiology and disease. Z. Gastroenterol 45, 51-62 https://doi.org/10.1055/s-2006-927394
  21. Williams, B. D., Plag, I., Troup, J., and Wolfe, R. R. (1995) Isotopic determination of glycolytic flux during intense exercise in humans J. Appl. Physiol. 78, 483-490 https://doi.org/10.1152/jappl.1995.78.2.483
  22. Fueger, P. T., Bracy, D. P., Malabanan, C. M., Pencek, R. R., and Wasserman, D. H. (2004a) Distributed control of glucose uptake by working muscles of conscious mice: roles of transport phosphorylation. Am. J. Physiol. 286, E77-E84
  23. Hultman, E. and Nilsson, L. H. (1971) Liver glycogen in man. Effect of different diets and muscular exercise. Advan. Exp. Med. Biol. 11, 143-151
  24. Ryder, J. W., Kawano, Y., Galuska, D., Fahlman, R., Wallberg- Henriksson, H., et al. (1999) Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice. FASEB J. 13, 2246-2256 https://doi.org/10.1096/fasebj.13.15.2246
  25. Sonne, B., Mikines, K. J., and Galbo, H. (1987) Glucose turnover in 48-hour-fasted running rats. Am. J. Physiol. 252, R587-R593
  26. Wolfe, R. R. (1992) Radioactive and stable isotope tracers in biomedicine: principles and practice of kinetic analysis. New York: Wiley-Liss
  27. Friedlander, A. L., Casazza, G. A., Horning, M. A., Huie, M. J., Piacentini, M. F., et al. (1998) Training-induced alterations of carbohydrate metabolism in women: women respond differently from men. J. Appl. Physiol. 85, 1175-1186 https://doi.org/10.1152/jappl.1998.85.3.1175
  28. John-Adler, H. B., Mcallister, R. M., and Terjung, R. L. (1986) Reduced running endurance in gluconeogenesis-inhibited rats. Am. J. Physiol. 251, R137-R142
  29. Kristiansen, S., Gade, J., Wojtaszewski, J. F., Kiens, B., and Richter, E. A. (2000) Glucose uptake is increased in trained vs. untrained muscle during heavy exercise. J. Appl. Physiol. 89, 1151-1158 https://doi.org/10.1152/jappl.2000.89.3.1151
  30. Kjaer, M., Secher, N. H., Bach, F. W., and Galbo, H. (1987) Role of motor center activity for hormonal changes and substrate mobilization in humans. Am. J. Physiol. 253, R687-R695
  31. Kjaer, M., Kiens, B., Hargresves, M., and Richter, E. A. (1991) Influences of active muscle mass on glucose homeostasis during exercise in humans. J. Appl. Physiol. 71, 552-557 https://doi.org/10.1152/jappl.1991.71.2.552
  32. Ploug, T., Stalkecht, B. M., Pedersen, O., Kahn, B. B., Ohkuwa, T., et al. (1990) Effect of endurance training on glucose transport capacity and transporter expression in rat skeletal muscle. J. Physiol. 259, E778-786
  33. Sonne, B. and Galbo, H. (1985) Carbohydrate metabolism during and after exercise in rats: studies with radioglucose. J. Appl. Physiol. 59, 1627-1639 https://doi.org/10.1152/jappl.1985.59.5.1627
  34. Brooks, G. A. and Mercier, J. (1994) Balance of carbohydrate and lipid utilization during exercise: the 'crossover'concept. J.Appl. Physiol. 76, 2253-2261 https://doi.org/10.1152/jappl.1994.76.6.2253
  35. Fueger, P. T., Hess, H. S., Posey, K. A., Bracy, D. P., Pencek, R. R., et al. (2004b) control of exercise-stimulated muscle glucose uptake by GLUT4 is dependent on glucose phosphorylation capacity in the conscious mouse. J. Biol. Chem. 279, 50956-50961 https://doi.org/10.1074/jbc.M408312200
  36. Sonne, B. and Galbo, H. (1986) Carbohydrate metabolism in fructose-fed and food-restricted running rats. J. Appl. Physiol. 61, 1457-1466 https://doi.org/10.1152/jappl.1986.61.4.1457
  37. Vissing, J., Sonne, B., and Galbo, H. (1988) Role of metabolic feedback regulation in glucose production of running rats. Am. J. Physiol. 255, R400-R406
  38. Fueger, P. T., Heikkinen, S., Bracy, D. P., Malabanan, C. M., Pencek, R. R., et al. (2003) Hexokinase II partial knockout impairs exercise-stimulated glucose uptake in oxidative muscles of mice. Am. J. Physiol. 285, E958-E963
  39. Houmard, J. A., Shinebarger, M. H., Dolan, P. L., Legget-Frazier, N., Bruner, R. K., et al. (1993) Exercise training increases GLUT-4 protein concentration in previously sedentary middleaged men. Am. J. Physiol. 264, E896-E901
  40. Turcotte, L. P., Rovner, A. S., Roark, R. R., and Brooks, G. A. (1990) Glucose kinetics in gluconeogenesis-inhibited rats during rest and exercise. Am. J. Physiol. 258, E203-E211
  41. Bergman, B. C., Butterfield, G. E., Wolfel, E. E., Lopaschuk, G. D., Casazza, G. A., et al. (1999) Muscle net glucose uptake and glucose kinetics after endurance training in men. Am. J. Physiol. 277, E81-E92
  42. Brooks, G. A., Fahey, T. D., and Baldwin, K. M. (2005) Exercise Physiology: Human Bioenergetics and Its Applications. New York: McGraw-Hill
  43. Galbo, H., Holst, J. J., and Christensen, N. J. (1975) Glucagon and plasma catecholamine responses to graded and prolonged exercise in man. J. Appl. Physiol. 38, 70-76 https://doi.org/10.1152/jappl.1975.38.1.70
  44. Geor, R. J., Hinchcliff, K. W., and Sams, R. A. (2000) Glucose infusion attenuates endogenous glucose production and enhances glucose use of horses during exercise. J. Appl. Physiol. 88, 1765-1776 https://doi.org/10.1063/1.1302738
  45. Yamatani, K., Shi, Z. Q., Giacca, A., Gupta, R., Fisher, S., et al. (1992) Role of FFA-glucose cycle in glucoregulation during exercise in total absence of insulin. Am. J. Phsiol. 263, E646-E653
  46. Ploug, T., van Deurs, B., Ai, H., Cushman, S. W., and Ralston, E. (1988) Analysis of GLUT4 distribution in whole skeletal muscle fibers: identification of distinct storage compartments that are recruited by insulin and muscle contractions. J. Cell. Biol. 142, 1429-1446 https://doi.org/10.1083/jcb.142.6.1429
  47. Wright, D. C., Hucker, K. A., Holloszy, J. O., and Han, D. H. (2004) $Ca^{2+}$ and AMPK both mediate stimulation of glucose transport by muscle contractions. Diabetes 53, 330-335 https://doi.org/10.2337/diabetes.53.2.330
  48. Ahlborg, B. and Felig, P. (1977) Substrate utilization during prolonged exercise preceded by ingestion of glucose. Am. J. Physiol. 233, E188-E194
  49. Wahren, J., Felig, P., and Hagenfeldt, L. (1978) Physical exercise and fuel homeostasis in diabetes mellitus. Diabetologica 14, 213-222 https://doi.org/10.1007/BF01219419
  50. Ahlborg, B., Felig, P., Hagenfeldt, L., Hendler, R., and Wahren, J. (1974) Substrate turnover during prolonged exercise in man. J. Clin. Invest. 53, 1080-1090 https://doi.org/10.1172/JCI107645
  51. Carter, S. L., Rennie, C., and Tarnopolsky, M. A. (2001) Substrate utilization during endurance exercise in men and women after endurance training. Am. J. Physiol. 280, E898-E907
  52. Douen, A. G., Ramlal, T., Rastogi, S., Bilan, P. J., Cartee, G. D., et al. (1990) Exercise induces recruitment of the 'insulinresponsive glucose transporter': evidence for distinct intracellular insulin- and exercise-recruitable transporter pools in skeletal muscle. J. Biol. Chem. 265, 13427-13430
  53. Jenkins, A. B., Chisholm, D. J., James, D. E., Ho, K. Y., and Kraegen, E. W. (1985) Exercise-induced hepatic glucose output is precisely sensitive to the rate of systemic glucose supply. Metabolism 34, 431-441 https://doi.org/10.1016/0026-0495(85)90208-2
  54. van Loon, L. J., Jeukendrup, A. E., Saris, W. H., and Wagen makers, A. J. (1999) Effect of training status on fuel selection during submaximal exercise with glucose ingestion. J. Appl. Physiol. 87, 1413-1420 https://doi.org/10.1152/jappl.1999.87.4.1413
  55. Zisman, A., Peroni, O. D., Abel, E. D., Micheal, M. D., Mauvais- Jarvis, F., et al. (2000) Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat. Med. 6, 924-928 https://doi.org/10.1038/78693
  56. Coggan, A. R., Swanson, S. C., Mendenhall, L. A., Habash, D. L., and Kien, C. L. (1995) Effect of endurance training on hepatic glycogenolysis and gluconeogenesis during prolonged exercise in men. Am. J. Physiol. 268, E375-E383
  57. McConell, G. K., Canny, B. J., Daddo, M. C., Nance, M. J., and Snow, R. J. (2000) Effect of carbohydrate ingestion on glucose kinetics and muscle metabolism during intense endurance exercise. J. Appl. Physiol. 89, 1690-1698 https://doi.org/10.1152/jappl.2000.89.5.1690
  58. Richter, E. A., Jensen, P., Kiens, B., and Kristiansen, S. (1998) Sarcolemmal glucose transport and GLUT-4 translocation during exercise are diminished by endurance training. Am. J. Physiol. 274, E89-E95
  59. Goodyear, L. J., Hirshman, M. F., King, P. A., Hotrod, E. D., Thompson, C. M., et al. (1990) Skeletal muscle plasma membrane glucose transport and glucose transporters after exercise. J. Appl. Physiol. 68, 193-198 https://doi.org/10.1152/jappl.1990.68.1.193
  60. Wojtaszewski, J. F. P., Lynge, J., Jakobsen, A. B., Goodyear, L. J., and Richer, E. A. (1999) Differential regulation of MAP kinase by contraction and insulin in skeletal muscle: metabolic implications. Am. J. Physiol. 277, E724-E732
  61. Romijn, J. A., Coyle, E. F., Sidossis, L. S., Gastaldelli, A., Horowitz, J. F., et al. (1993) Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am. J. Physiol. 265, E380-E391
  62. Bjorkman, O., Felig, P., Hagenfeldt, L., and Wahren, J. (1981) Influence of hypoglucagonemia on splanchnic glucose output during leg exercise in man. Clin. Physiol. 1, 43-57 https://doi.org/10.1111/j.1475-097X.1981.tb00873.x
  63. Friedlander, A. L., Casazza, G. A., Horning, M. A., Huie, M. J., and Brooks, G. A. (1997) Training-induced alterations of glucose flux in men. J. Appl. Physiol. 82, 1360-1369 https://doi.org/10.1152/jappl.1997.82.4.1360
  64. Cooper, D. M., Barstow, T. J., Bergner, A., and Lee, W. P. (1989) Blood glucose turnover during high- and low- intensity exercise. Am. J. Physiol. 257, E405-E412
  65. Ryder, J. W., Chibalin, A. V., and Zierath, J. R. (2001) Intracelluar mechanisms underlying increases in glucose uptake in response to insulin or exercise in skeletal muscle. Acta Physiol. Scand. 171, 249-257 https://doi.org/10.1046/j.1365-201x.2001.00827.x
  66. Stanley, W. C., Wisneski, J. A., Gertz, E. W., Neese, R. A., and Brooks, G. A. (1988) Glucose and lactate interrelations during moderate-intensity exercise in humans. Meta. Clin. Exp. 37, 850-858 https://doi.org/10.1016/0026-0495(88)90119-9
  67. Ihelemann, J., Ploug, T., Hellsten, T., and Galbo, H. (1999b) Effect of tension on concentration-induced glucose transport in rat skeletal muscle. Am. J. Physiol. 277, E208-E214
  68. Miller, B. F., Fattor, J. A., Jacobs, K. A., Horning, M. A., Suh, S. H., et al. (2002) Metabolic and cardiorespiratory responses to 'the lactate clamp'. Am. J. Physiol. 283, E889-E898
  69. Jeukendrup, A. E., Wagenmakers, A. J., Stegen, J. H., Gijsen, A. P., Brouns, F., et al. (1999b) Carbohydrate ingestion can completely suppress endogenous glucose production during exercise. Am. J. Physiol. 276, E672-E683