A Synaptic Model for Pain: Long-Term Potentiation in the Anterior Cingulate Cortex

  • Zhuo, Min (Department of Physiology, Faculty of Medicine, University of Toronto Center for the Study of Pain, University of Toronto)
  • Received : 2007.02.25
  • Accepted : 2007.02.27
  • Published : 2007.06.30

Abstract

Investigation of molecular and cellular mechanisms of synaptic plasticity is the major focus of many neuroscientists. There are two major reasons for searching new genes and molecules contributing to central plasticity: first, it provides basic neural mechanism for learning and memory, a key function of the brain; second, it provides new targets for treating brain-related disease. Long-term potentiation (LTP), mostly intensely studies in the hippocampus and amygdala, is proposed to be a cellular model for learning and memory. Although it remains difficult to understand the roles of LTP in hippocampus-related memory, a role of LTP in fear, a simplified form of memory, has been established. Here, I will review recent cellular studies of LTP in the anterior cingulate cortex (ACC) and then compare studies in vivo and in vitro LTP by genetic/pharmacological approaches. I propose that ACC LTP may serve as a cellular model for studying central sensitization that related to chronic pain, as well as pain-related cognitive emotional disorders. Understanding signaling pathways related to ACC LTP may help us to identify novel drug target for various mental disorders.

Keywords

Adenylyl Cyclases;Anterior Cingulate Cortex;Fear Memory;Gene Knockout;Immediate Early Genes;Long-Term Depression;Long-Term Potentiation;Mice;Persistent Pain;Synaptic Plasticity

Acknowledgement

Supported by : NIH

References

  1. Carroll, R. C., Beattie, E. C., von Zastrow, M., and Malenka, R. C. (2001) Role of AMPA receptor endocytosis in synaptic plasticity. Nat. Rev. Neurosci. 2, 315-324 https://doi.org/10.1038/35072500
  2. Casey, K. L. (1999) Forebrain mechanisms of nociception and pain: analysis through imaging. Proc. Natl. Acad. Sci. USA 96, 7668-7674
  3. Chai, S. C., Holahan, M. R., Shyu, B. C., and Wang, C. C. (2006) Differential patterns of extracellular signal-regulated kinase-1 and -2 phosphorylation in rat limbic brain regions after short-term and long-term inhibitory avoidance learning. Neuroscience 137, 1321-1330 https://doi.org/10.1016/j.neuroscience.2005.10.009
  4. Hollmann, M. and Heinemann, S. (1994) Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31-108 https://doi.org/10.1146/annurev.ne.17.030194.000335
  5. Jin, P., Zarnescu, D. C., Zhang, F., Pearson, C. E., Lucchesi, J. C., et al. (2003) RNA-mediated neurodegeneration caused by the fragile X premutation rCGG repeats in Drosophila. Neuron 39, 739-747 https://doi.org/10.1016/S0896-6273(03)00533-6
  6. Lee, D. E., Kim, S. J., and Zhuo, M. (1999) Comparison of behavioral responses to noxious cold and heat in mice. Brain Res. 845, 117-121 https://doi.org/10.1016/S0006-8993(99)01956-3
  7. Liauw, J., Wang, G. D., and Zhuo, M (2003) NMDA receptors contribute to synaptic transmission in anterior cingulate cortex of adult mice. Sheng Li Xue Bao 55, 373-380
  8. Merzenich, M. (1998) Long-term change of mind. Science 282, 1062-1063 https://doi.org/10.1126/science.282.5391.1062
  9. Passafaro, M., Piech, V., and Sheng, M. (2001) Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nat. Neurosci. 4, 917-926 https://doi.org/10.1038/nn0901-917
  10. Toyoda, H., Wu, L. J., Zhao, M. G., Xu, H., Jia, Z., et al. (2007) Long-term depression requires postsynaptic AMPA GluR2 receptor in adult mouse cingulate cortex. J. Cell. Physiol. 211, 336-343 https://doi.org/10.1002/jcp.20940
  11. Vadakkan, K. I., Wang, H., Ko, S. W., Zastepa, E., Petrovic, M. J., et al. (2006) Genetic reduction of chronic muscle pain in mice lacking calcium/calmodulin-stimulated adenylyl cyclases. Mol. Pain 2, 7
  12. Wei, F. and Zhuo, M. (2001) Potentiation of sensory responses in the anterior cingulate cortex following digit amputation in the anaesthetised rat. J. Physiol. 532, 823-833 https://doi.org/10.1111/j.1469-7793.2001.0823e.x
  13. Wei, F., Qiu, C. S., Kim, S. J., Muglia, L., Maas, J. W., et al. (2002b) Genetic elimination of behavioral sensitization in mice lacking calmodulin-stimulated adenylyl cyclases. Neuron 36, 713-726 https://doi.org/10.1016/S0896-6273(02)01019-X
  14. Wei, F., Xia, X. M., Tang, J., Ao, H., Ko, S., et al. (2003) Calmodulin regulates synaptic plasticity in the anterior cingulate cortex and behavioral responses: a microelectroporation study in adult rodents. J. Neurosci. 23, 8402-8409 https://doi.org/10.1523/JNEUROSCI.23-23-08402.2003
  15. Willemsen, R., Oostra, B. A., Bassell, G. J., and Dictenberg, J. (2004) The fragile X syndrome: from molecular genetics to neurobiology. Ment. Retard. Dev. Disabil. Res. Rev. 10, 60-67 https://doi.org/10.1002/mrdd.20010
  16. Xia, Z. and Storm, D. R. (1997) Calmodulin-regulated adenylyl cyclases and neuromodulation. Curr. Opin. Neurobiol. 7, 391-396 https://doi.org/10.1016/S0959-4388(97)80068-2
  17. Zalfa, F., Giorgi, M., Primerano, B., Moro, A., Di Penta, A., et al. (2003) The fragile X syndrome protein FMRP associates with BC1 RNA and regulates the translation of specific mRNAs at synapses. Cell 112, 317-327 https://doi.org/10.1016/S0092-8674(03)00079-5
  18. Zhuo, M. (2005) Canadian association of neuroscience review: cellular and synaptic insights into physiological and pathological pain. EJLB-CIHR michael smith chair in neurosciences and mental health lecture. Can. J. Neurol. Sci. 32, 27-36 https://doi.org/10.1017/S031716710001684X
  19. Bredt, D. S. and Nicoll, R. A. (2003) AMPA receptor trafficking at excitatory synapses. Neuron 40, 361-379 https://doi.org/10.1016/S0896-6273(03)00640-8
  20. Nicoll, R. A. and Malenka, R. C. (1995) Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377, 115-118 https://doi.org/10.1038/377115a0
  21. Talbot, J. D., Marrett, S., Evans, A. C., Meyer, E., Bushnell, M. C., et al. (1991) Multiple representations of pain in human cerebral cortex. Science 251, 1355-1358 https://doi.org/10.1126/science.2003220
  22. Wang, G. D. and Zhuo, M. (2006) Forebrain NMDA receptors contribute to neuronal spike responses in adult mice. Sheng Li Xue Bao 58, 511-520
  23. Song, I. and Huganir, R. L. (2002) Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci. 25, 578-588 https://doi.org/10.1016/S0166-2236(02)02270-1
  24. Koyama, T., Kato, K., Tanaka, Y. Z., and Mikami, A. (2001) Anterior cingulate activity during pain-avoidance and reward tasks in monkeys. Neurosci. Res. 39, 421-430 https://doi.org/10.1016/S0168-0102(01)00197-3
  25. Shibata, H. (1993) Efferent projections from the anterior thalamic nuclei to the cingulate cortex in the rat. J. Comp. Neurol. 330, 533-542 https://doi.org/10.1002/cne.903300409
  26. Teixeira, C. M., Pomedli, S. R., Maei, H. R., Kee, N., and Frankland, P. W. (2006) Involvement of the anterior cingulate cortex in the expression of remote spatial memory. J. Neurosci. 26, 7555-7564 https://doi.org/10.1523/JNEUROSCI.1068-06.2006
  27. Frankland, P. W., Bontempi, B., Talton, L. E., Kaczmarek, L., and Silva, A. J. (2004) The involvement of the anterior cingulate cortex in remote contextual fear memory. Science 304, 881-883 https://doi.org/10.1126/science.1094804
  28. Guillaud, L., Setou, M., and Hirokawa, N (2003) KIF17 dynamics and regulation of NR2B trafficking in hippocampal neurons. J. Neurosci. 23, 131-140 https://doi.org/10.1523/JNEUROSCI.23-01-00131.2003
  29. Peoples, L. L. (2002) Neuroscience. Will, anterior cingulate cortex, and addiction. Science 296, 1623-1624 https://doi.org/10.1126/science.1072997
  30. Rainville, P., Duncan, G. H., Price, D. D., Carrier, B., and Bushnell, M. C. (1997) Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277, 968-971 https://doi.org/10.1126/science.277.5328.968
  31. Zhuo, M. (2006) Molecular mechanisms of pain in the anterior cingulate cortex. J. Neurosci. Res. 84, 927-933 https://doi.org/10.1002/jnr.21003
  32. Sikes, R. W. and Vogt, B. A. (1992) Nociceptive neurons in area 24 of rabbit cingulate cortex. J. Neurophysiol. 68, 1720-1732 https://doi.org/10.1152/jn.1992.68.5.1720
  33. Malinow, R. and Malenka, R. C. (2002) AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103-126 https://doi.org/10.1146/annurev.neuro.25.112701.142758
  34. Tang, J., Ko, S., Ding, H. K., Qiu, C. S., Calejesan, A. A., et al. (2005) Pavlovian fear memory induced by activation in the anterior cingulate cortex. Mol. Pain 1, 6 https://doi.org/10.1186/1744-8069-1-16
  35. Wong, R. W., Setou, M., Teng, J., Takei, Y., and Hirokawa, N. (2002) Overexpression of motor protein KIF17 enhances spatial and working memory in transgenic mice. Proc. Natl. Acad. Sci. USA 99, 14500-14505
  36. Eisenberger, N. I., Lieberman, M. D., and Williams, K. D. (2003) Does rejection hurt? An FMRI study of social exclusion. Science 302, 290-292 https://doi.org/10.1126/science.1089134
  37. Lei, L. G., Sun, S., Gao, Y. J., Zhao, Z. Q., and Zhang, Y. Q. (2004) NMDA receptors in the anterior cingulate cortex mediate pain-related aversion. Exp. Neurol. 189, 413-421 https://doi.org/10.1016/j.expneurol.2004.06.012
  38. Sanders, G. S., Gallup, G. G., Heinsen, H., Hof, P. R., and Schmitz, C. (2002) Cognitive deficits, schizophrenia, and the anterior cingulate cortex. Trends Cogn. Sci. 6, 190-192 https://doi.org/10.1016/S1364-6613(02)01892-2
  39. Singer, T., Seymour, B., O'Doherty, J., Kaube, H., Dolan, R. J., et al. (2004) Empathy for pain involves the affective but not sensory components of pain. Science 303, 1157-1162 https://doi.org/10.1126/science.1093535
  40. Wu, M. F., Pang, Z. P., Zhuo, M., and Xu, Z. C. (2005c) Prolonged membrane potential depolarization in cingulate pyramidal cells after digit amputation in adult rats. Mol. Pain 1, 23 https://doi.org/10.1186/1744-8069-1-23
  41. Liauw, J., Wu, L. J., and Zhuo, M. (2005) Calcium-stimulated adenylyl cyclases required for long-term potentiation in the anterior cingulate cortex. J. Neurophysiol. 94, 878-882 https://doi.org/10.1152/jn.01205.2004
  42. Tang, Y. P., Shimizu, E., Dube, G. R., Rampon, C., Kerchner, G. A., et al. (1999) Genetic enhancement of learning and memory in mice. Nature 401, 63-69 https://doi.org/10.1038/43432
  43. Calejesan, A. A., Kim, S. J., and Zhuo, M. (2000) Descending facilitatory modulation of a behavioral nociceptive response by stimulation in the adult rat anterior cingulate cortex. Eur. J. Pain. 4, 83-96 https://doi.org/10.1053/eujp.1999.0158
  44. Yamamura, H., Iwata, K., Tsuboi, Y., Toda, K., Kitajima, K., et al. (1996) Morphological and electrophysiological properties of ACCx nociceptive neurons in rats. Brain Res. 735, 83-92 https://doi.org/10.1016/0006-8993(96)00561-6
  45. Zhao, M. G., Toyoda, H., Ko, S. W., Ding, H. K., Wu, L. J., et al. (2005a) Deficits in trace fear memory and long-term potentiation in a mouse model for fragile X syndrome. J. Neurosci. 25, 7385-7392 https://doi.org/10.1523/JNEUROSCI.1520-05.2005
  46. Monyer, H., Burnashev, N., Laurie, D. J., Sakmann, B., and Seeburg, P. H. (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12, 529-540 https://doi.org/10.1016/0896-6273(94)90210-0
  47. Wei, F., Qiu, C. S., Liauw, J., Robinson, D. A., Ho, N., et al. (2002a) Calcium calmodulin-dependent protein kinase IV is required for fear memory. Nat. Neurosci. 5, 573-579 https://doi.org/10.1038/nn0602-855
  48. Botvinick, M. M., Cohen, J. D., and Carter, C. S. (2004) Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn. Sci. 8, 539-546 https://doi.org/10.1016/j.tics.2004.10.003
  49. Wu, L. J., Xu, H., Ren, M., and Zhuo, M. (2006) Genetic and pharmacological studies of GluR5 modulation of inhibitory synaptic transmission in the anterior cingulate cortex of adult mice. J. Neurobiol.
  50. Johansen, J. P. and Fields, H. L. (2004) Glutamatergic activation of anterior cingulate cortex produces an aversive teaching signal. Nat. Neurosci. 7, 398-403 https://doi.org/10.1038/nn1207
  51. Zhao, M. G., Ko, S. W., Wu, L. J., Toyoda, H., Xu, H., et al. (2006) Enhanced presynaptic neurotransmitter release in the anterior cingulate cortex of mice with chronic pain. J. Neurosci. 26, 8923-8930 https://doi.org/10.1523/JNEUROSCI.2103-06.2006
  52. Bagni, C. and Greenough, W. T. (2005) From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome. Nat. Rev. Neurosci. 6, 376-387
  53. Rainville, P., Bushnell, M. C., and Duncan, G. H. (2001) Representation of acute and persistent pain in the human CNS: potential implications for chemical intolerance. Ann. N Y Acad. Sci. 933, 130-141 https://doi.org/10.1111/j.1749-6632.2001.tb05820.x
  54. Wei, F., Li, P., and Zhuo, M. (1999) Loss of synaptic depression in mammalian anterior cingulate cortex after amputation. J. Neurosci. 19, 9346-9354 https://doi.org/10.1523/JNEUROSCI.19-21-09346.1999
  55. Ji, R. R., Kohno, T., Moore, K. A., and Woolf, C. J. (2003) Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci. 26, 696-705 https://doi.org/10.1016/j.tins.2003.09.017
  56. Wu. L. J., Toyoda, H., Zhao, M. G., Lee, Y. S., Tang, J., et al. (2005b) Upregulation of forebrain NMDA NR2B receptors contributes to behavioral sensitization after inflammation. J. Neurosci. 25, 11107-11116 https://doi.org/10.1523/JNEUROSCI.1678-05.2005
  57. Barnes, C. A. (1995) Involvement of LTP in memory: are we 'searching under the street light'? Neuron 15, 751-754 https://doi.org/10.1016/0896-6273(95)90166-3
  58. Nimchinsky, E. A., Vogt, B. A., Morrison, J. H., and Hof, P. R. (1995) Spindle neurons of the human anterior cingulate cortex. J. Comp. Neurol. 355, 27-37 https://doi.org/10.1002/cne.903550106
  59. Setou, M., Nakagawa, T., Seog, D. H., and Hirokawa, N. (2000) Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288, 1796-1802 https://doi.org/10.1126/science.288.5472.1796
  60. Wang, C. C. and Shyu, B. C. (2004) Differential projections from the mediodorsal and centrolateral thalamic nuclei to the frontal cortex in rats. Brain Res. 995, 226-235 https://doi.org/10.1016/j.brainres.2003.10.006
  61. Ko, S. W, Vadakkan, K. I., Ao, H., Gallitano-Mendel, A., Wei, F., et al. (2005b) Selective contribution of Egr1 (zif/268) to persistent inflammatory pain. J. Pain 6, 12-20 https://doi.org/10.1016/j.jpain.2004.10.001
  62. Wei, F., Wang, G. D., Kerchner, G. A., Kim, S. J., Xu, H. M., et al. (2001) Genetic enhancement of inflammatory pain by forebrain NR2B overexpression. Nat. Neurosci. 4, 164-169 https://doi.org/10.1038/83993
  63. Bliss, T. V. and Collingridge, G. L. (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31-39 https://doi.org/10.1038/361031a0
  64. Zhao, M. G., Toyoda, H., Lee, Y. S., Wu, L. J., Ko, S. W., et al. (2005b) Roles of NMDA NR2B subtype receptor in prefrontal long-term potentiation and contextual fear memory. Neuron 47, 859-872 https://doi.org/10.1016/j.neuron.2005.08.014
  65. Zhuo, M. (2002) Glutamate receptors and persistent pain: targeting forebrain NR2B subunits. Drug Discov. Today 7, 259-267 https://doi.org/10.1016/S1359-6446(01)02138-9
  66. Derbyshire, S. W., Whalley, M. G., Stenger, V. A., and Oakley, D. A. (2004) Cerebral activation during hypnotically induced and imagined pain. Neuroimage 23, 392-401 https://doi.org/10.1016/j.neuroimage.2004.04.033
  67. Tao, Y. X., Rumbaugh, G., Wang, G. D., Petralia, R. S., Zhao, C., et al. (2003) Impaired NMDA receptor-mediated postsynaptic function and blunted NMDA receptor-dependent persistent pain in mice lacking postsynaptic density-93 protein. J. Neurosci. 23, 6703-6712 https://doi.org/10.1523/JNEUROSCI.23-17-06703.2003
  68. Wu, L. J., Zhao, M. G., Toyoda, H., Ko, S. W., and Zhuo, M. (2005a) Kainate receptor-mediated synaptic transmission in the adult anterior cingulate cortex. J. Neurophysiol. 94, 1805-1813 https://doi.org/10.1152/jn.00091.2005
  69. Hutchison, W. D., Davis, K. D., Lozano, A. M., Tasker, R. R., and Dostrovsky, J. O. (1999) Pain-related neurons in the human cingulate cortex. Nat. Neurosci. 2, 403-405 https://doi.org/10.1038/8065
  70. Li, P., Wilding, T. J., Kim, S. J., Calejesan, A. A., Huettner, J. E., et al. (1999) Kainate-receptor-mediated sensory synaptic transmission in mammalian spinal cord. Nature 397, 161-164 https://doi.org/10.1038/16469
  71. Sheng, M., Cummings, J., Roldan, L. A., Jan, Y. N., and Jan, L. Y. (1994) Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368, 144-147 https://doi.org/10.1038/368144a0
  72. Hayashi, Y., Shi, S. H., Esteban, J. A., Piccini, A., Poncer, J. C., et al. (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262-2267 https://doi.org/10.1126/science.287.5461.2262
  73. Johansen, J. P., Fields, H. L., and Manning, B. H. (2001) The affective component of pain in rodents: direct evidence for a contribution of the anterior cingulate cortex. Proc. Natl. Acad. Sci. USA 98, 8077-8082
  74. Ko, S. W., Ao, H. S., Mendel, A. G., Qiu, C. S., Wei, F., et al. (2005a) Transcription factor Egr-1 is required for long-term fear memory and anxiety. Sheng Li Xue Bao 57, 421-432
  75. Dalley, J. W., Cardinal, R. N., and Robbins, T. W. (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci. Biobehav. Rev. 28, 771-784 https://doi.org/10.1016/j.neubiorev.2004.09.006
  76. de Tommaso, M., Losito, L., Difruscolo, O., Libro, G., Guido, M., et al. (2005) Changes in cortical processing of pain in chronic migraine. Headache 45, 1208-1218 https://doi.org/10.1111/j.1526-4610.2005.00244.x
  77. Kandel, E. R. (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030-1038 https://doi.org/10.1126/science.1067020
  78. Sigurdsson, T., Doyere, V., Cain, C. K., and LeDoux, J. E. (2007) Long-term potentiation in the amygdala: a cellular mechanism of fear learning and memory. Neuropharmacology 52, 215-227 https://doi.org/10.1016/j.neuropharm.2006.06.022