Transcriptional Activator Elements for Curtovirus C1 Expression Reside in the 3' Coding Region of ORF C1

  • Hur, Jingyung (Department Plant Cellular and Molecular Biology and Plant Biotechnology Center, The Ohio State University) ;
  • Buckley, Kenneth J. (Plant Biotechnology Center, The Ohio State University) ;
  • Lee, Sukchan (Dept. Genetic Engineering, Sungkyunkwan University) ;
  • Davis, Keith R. (James Graham Brown Cancer Center and Dept. Pharmacology and Toxicology, University of Louisville)
  • Received : 2006.11.02
  • Accepted : 2007.01.03
  • Published : 2007.02.28


Beet curly top virus (BCTV) and Beet severe curly top virus (BSCTV), members of curtoviruses, encode seven open reading frames (ORFs) within a ~3 kb genome. One of these viral ORFs, C1, is known to play an important role in the early stage of viral infection in plants during initiation of viral DNA replication. We used promoter:: reporter (${\beta}$-glucuronidase) gene fusions in transgenic Arabidopsis to identify the putative promoter region of BCTV ORF C1. Unlike other geminiviruses, the intergenic region of BCTV was not sufficient to promote C1 expression in transgenic plants. When sequences extending into the coding region of C1 were tested, strong expression of the reporter protein was observed in vascular tissues of transgenic plants. This expression was not dependent on the presence of the intergenic regions or proximal 5' portions of the C1 coding region. Transgenic plants expressing a reporter gene under control of the putative complete C1 promoter were inoculated with virus to determine if any viral transcript affected C1 expression. Virus inoculated plants did not show any altered pattern or change in of reporter gene expression level. These results suggest that (1) important transcriptional activator elements for C1 expression reside in the 3' portion of C1 coding area itself, (2) C1 protein does not auto-regulate its own expression and (3) C1 expression of two curtoviruses is controlled differently compared to other geminiviruses.


Arabidopsis;Curtovirus;Geminivirus;ORF C1;Promoter


Supported by : National Institute of General Medical Sciences


  1. Ach, R. A., Durfee, T., Miller, A. B., Taranto, P., Hanley- Bowdoin, L., et al. (1997) RRB1 and RRB1 encode maize retinoblastoma related proteins that interact with a plant Dtype cyclin and geminivirus replication protein. Mol. Cell Biol. 17, 5077−5086
  2. Briddon, R. W., Watts, J., Markham, P. G., and Stanley, J. (1989) The coat protein of beet curly top virus is essential for infectivity. Virology 172, 628−633
  3. Damania, B. and Alwine, J. C. (1996) TAF-like function of SV40 large T antigen. Genes Dev 10, 1369−1381
  4. Fauquet, C. M. and Stanley, J. (2005) Revising the way we conceive and name viruses below the species level: a review of geminivirus taxonomy calls for new standardized isolate descriptors. Arch. Virol. 150, 2151−2179
  5. Fontes, E. P., Eagle, P. A., Sipe, P. S., Luckow, V. A., and Hanley- Bowdoin, L. (1994) Interaction between a geminivirus replication protein and origin DNA is essential for viral replication. J. Biol. Chem. 269, 8459−8465
  6. Fontes, E. P., Luckow, V. A., and Hanley-Bowdoin, L. (1992) A geminivirus replication protein is a sequence-specific DNA binding protein. Plant Cell 4, 597−608
  7. Grafi, G., Burnett, R. J., Helentjaris, T., Larkins, B. A., DeCaprio, J. A., et al. (1996) A maize cDNA encoding a member of the retinoblastoma protein family : invovement in endoreduplication. Proc. Natl. Acad. Sci. USA 93, 8962−8967
  8. Hanley-Bowdoin, L., Elmer, J. S., and Rogers, S. G. (1990) Expression of functional replication protein from tomato golden mosaic virus in transgenic tobacco plants. Proc. Natl. Acad. Sci. USA 87, 1446−1450
  9. Hanley-Bowdoin, L., Settlage, S. B., Orozco, B. M., Nagar, S., and Robertson, D. (1999) Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit. Rev. Plant Sci. 18, 71−106
  10. Kong, L. J., Orozco, B. M., Rose, J. L., Nagar, S., Ou, S., et al. (2000) A geminivirus replication protein interacts with the retinoblastoma protein through a novel domain to determine symptoms and tissue specificity of infection in plants. EMBO J. 19, 3489−3495
  11. Laufs, J., Jupin, I., David, C., Schumacher, S., Heyraud-Nitschke, F., and Gronenborn, B. (1995) Geminivirus replication: Genetic and biochemical characterization of Rep protein function, a review. Biochimie 77, 765−773
  12. Lee, W. S., Kao, C. C., Bryant, G. O., Liu X., and Berk, A. J. (1991) Adenovirus E1A activation domain binds the basic repeat in the TATA box transcription factor. Cell 67, 356−376
  13. Nagar, S., Pedersen, T. J., Carrick, K. M., Hanley-Bowdoin, L., and Robertson, D. (1995) A geminivirus induces expression of a host DNA synthesis protein in terminally differentiated plant cells. Plant Cell 7, 705−719
  14. Orozco, B. M., Gladfelter, H. J., Settlage, S. B., Eagle, P. A., Gentry, R. N., et al. (1998) Multiple cis elements contribute to geminivirus origin function. Virology 242, 346−356
  15. Vousen, K. (1993) Interactions of human papilomavirus transforming proteins with the products of tumor suppressor genes. FASEB J. 7, 872−879
  16. Frischmuth, S., Frischmuth, T., Latham, J. R., and Stanley, J. (1993) Transcriptional analysis of the virion-sense genes of the geminivirus beet curly top virus. Virology 197, 312−319
  17. Lee, S., Stenger, D. C., Bissaro, D. M., and Davis, K. R. (1994) Identification of loci in Arabidopsis that confer resistance to geminivirus infection. Plant J. 6, 525−535
  18. Eagle, P. A., Orozco, B. M., and Hanley-Bowdoin, L. (1994) A DNA sequence required for geminivirus replication also mediates transcriptional regulation. Plant Cell 6, 1157−1170
  19. Gutierrez, C. (2000) DNA replication and cell cycle in plants: learning from geminiviruses. EMBO J. 19, 792−799
  20. Labrie, C., Lee B. H., and Mathews, M. B. (1995) Transcription factors RFX1/EF-C and ATF-1 associate with the adenovirus E1A-responsive element of the human proliferating cell nuclear antigen promoter. Nucleic Acids Res. 23, 3732−3741
  21. Lazarowitz, S. G. and Lazdins, I. B. (1991) Infectivity and complete nucleotide sequence of the cloned genomic components of a bipartite squash leaf curl geminivirus with a broad host range phenotype. Virology 180, 58−69
  22. Fontes, E. P., Gladfelter, H. J., Schaffer, R. L., Petty, I. T., and Hanley-Bowdoin, L. (1994) Geminivirus replication origins have a modular organization. Plant Cell 6, 405−416
  23. Lazarowitz, S. G. (1999) Probing plant cell structure and function with viral movement proteins. Curr. Opin. Plant Biol. 2, 332−338
  24. Ludlow, J. W. (1993). Interactions between SV40 large-tumor antigen and the growth suppressor proteins pRB and p53. FASEB J. 7, 866−871
  25. Heyraud, F., Matzeit, V., Kammann, M., Schaefer, S., Schaefer, J., et al. (1993) Identification of the initiation sequence for viral-DNA synthesis of wheat dwarf virus. EMBO J. 12, 4445−4452
  26. Choi, I. R. and Stenger, D. C. (1996) The strain-specific cisacting element of beet curly top geminivirus DNA replication maps to the directly repeated motif of the ori. Virology 226, 122−126
  27. Eckner, R., Ludlow, J. W., Lill, N. L., Oldread, E., Arany, Z., et al. (1996) Association of p300 and CBP with simian virus 40 large T antigen. Mol. Cell Biol. 16, 3454−3464
  28. Moran, E. (1993). Interaction of adenoviral proteins with pRB and p53. FASEB J. 7, 880−885
  29. Van Regenmortel, M. H., Bishop, D. H., Fauquet, C. M., Mayo, M. A., Maniloff, J., et al. (1997) Guidelines to the demarcation of virus species [news]. Arch. Virol. 142, 505−518
  30. Xie, Q., Sanz-Burgos, A. P., Hannon, G. J., and Gutierrez, C. (1996) Plant cells contain a novel member of the retinoblastoma family of growth regulatory proteins. EMBO J. 15, 4900−4908
  31. Boulton, M. I., Pallaghy, C. K., Chatani, M., MacFarlane, S., and Davies, J. W. (1993) Replication of maize streak virus mutants in maize protoplasts: evidence for a movement protein. Virology 192, 85−93
  32. Lee, S. S., Yoon, G. M., Rho, E. J., Moon, E., and Pai, H. (2006) Functional characterization of NtCDPK1 in Tobacco. Mol. Cells 21, 141−146
  33. Hong, Y. and Stanley, J. (1995) Regulation of African cassava mosaic virus complementary-sense gene expression by Nterminal sequence of the replication-associated protein AC1. J. Gen. Virol. 76, 2415−2422
  34. Lazarowitz, S. G., Pinder, A. J., Damsteegt, V. D., and Rogers, S. G. (1989) Maize streak virus genes essential for systemic spread and symptom development. EMBO J. 8, 1023−1032
  35. Rybicki, E. P. (1994) A phylogenetic and evolutionary justification for three genera of Geminiviridae. Arch. Virol. 139, 49−77
  36. Sunter, G. and Bisaro, D. M. (1997) Regulation of a geminivirus coat protein promoter by AL2 protein (TrAP): evidence for activation and derepression mechanisms. Virology 232, 269−280
  37. Liu, L., Pinner, M. S., Davies, J. W., and Stanley, J. (1999) Adaptation of the geminivirus bean yellow dwarf virus to dicotyledonous hosts involves both virion-sense and complementary- sense genes. J. Gen. Virol. 80, 501−506
  38. Sunter, G., Harititz, M. D., and Bisaro, D. M. (1993) Tomato golden mosaic virus leftward gene expression: autoregulation of geminivirus replication protein. Virology 195, 275−280
  39. Orozco, B. M. and Hanley-Bowdoin, L. (1996) A DNA structure is required for geminivirus replication origin function. J. Virol 70, 148−158
  40. Timmermans, M. C., Das, O. P., and Messing, I. (1992) Trans replication and high copy numbers of wheat dwarf virus vectors in maize cells. Nucleic Acids Res. 20, 4047−4054
  41. Engle, P. A. and Hanley-Bowdoin, L. (1997) Cis elements that contribute to geminivirus transcriptional regulation and the efficiency of DNA replication. J. Virology 71, 6947−6955
  42. Haley, A., Zhan, X., Richardson, K., Head, K., and Morris, B. (1992) Regulation of the activities of African cassava mosaic virus promoters by the AC1, AC2 and AC3 gene products. Virology 188, 905−909
  43. Groning, B. R., Hayes, R. J., and Buck, K. W. (1994) Simultaneous regulation of tomato golden mosaic virus coat protein and AL1 gene expression : expression of the AL4 gene may contribute to suppression of the AL1 gene. J. Gen. Virol. 75. 721−726