Leukotriene Synthesis in Response to A23187 Is Inhibited by Methyl-β-Cyclodextrin in RBL-2H3 Cells

  • You, Hye Jin (School of Life Sciences and Biotechnology, Korea University) ;
  • Seo, Ji-Min (School of Life Sciences and Biotechnology, Korea University) ;
  • Moon, Ji-Young (School of Life Sciences and Biotechnology, Korea University) ;
  • Han, Sung-Sik (School of Life Sciences and Biotechnology, Korea University) ;
  • Ko, Young-Gyu (School of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Jae-Hong (School of Life Sciences and Biotechnology, Korea University)
  • Received : 2006.10.23
  • Accepted : 2006.12.27
  • Published : 2007.02.28

Abstract

Leukotrienes (LTs) are produced by several biosynthetic enzymes including cytosolic phospholipase $A_2$ ($cPLA_2$), 5-lipoxygenase (5-LO), and 5-lipoxygenase activating protein (FLAP) in the perinuclear area. In the present study, we showed that pretreatment with methyl-${\beta}$-cyclodextrin (MβCD), a cholesterol-depleting agent, dramatically reduced the synthesis of LTs in response to A23187 in mast cells. A23187-induced LT synthesis was inhibited by pretreatment with M${\beta}$CD, and this effect was reversed when cholesterol was added. In an approach to identifying the $M{\beta}CD$-sensitive protein(s), we observed that FLAP co-localized with flotillin-1, a lipid raft marker protein, in the lipid raft-rich low-density region of sucrose gradients. In addition, electron microscopic analysis revealed that FLAP co-localized with flotillin-1. Together, these results suggest that FLAP is present in cholesterol-rich lipid raft-like domains and that its localization in these domains is critical for LT synthesis.

Keywords

A23187;Cholesterol;FLAP;Leukotrienes;Lipid Raft;Mast Cell

Acknowledgement

Supported by : Korea Science and Engineering Foundation (KOSEF), Ministry of Health & Welfare

References

  1. Albi, E., Peloso, I., and Magni, M. V. (1999) Nuclear membrane sphingomyelin-cholesterol changes in rat liver after hepatectomy. Biochem. Biophys. Res. Commun. 262, 692−695
  2. Barabe, F., Pare, G., Fernandes, M. J. G., Bourgoin, S. G., and Naccache, P. H. (2002) Cholesterol-modulating agents selectively inhibit calcium influx by chemoattractants in human neutrophils. J. Biol. Chem. 277, 13473−13478
  3. Brock, T. G., Maydanski, E., McNish, R. W., and Peters-Golden, M. (2001) Co-localization of leukotriene A4 hydrolase with 5-lipoxygenase in nuclei of alveolar macrophages and rat basophilic leukemia cells but not neutrophils. J. Biol. Chem. 276, 35071−35077
  4. Brown, D. A. and London, E. (1998) Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 14, 111− 136
  5. Goetzl, E. J., An, S., and Smith, W. L. (1995) Specificity of expression and effects of eicosanoid mediators in normal physiology and human diseases. FASEB J. 9, 1051−1058
  6. Haeggstrom, J. Z., Wetterholm, A., Medina, J. F., and Samuelsson, B. (1993) Leukotriene A4 hydrolase: structural and functional properties of the active center. J. Lipid Mediat. 6, 1−13
  7. Ikonen, E. (2001) Roles of lipid rafts in membrane transport. Curr. Opin. Cell Biol. 13, 470−477
  8. Jakobsson, P. J., Mancini, J. A., Riendeau, D., and Ford- Hutchinson, A. W. (1997) Identification and characterization of a novel microsomal enzyme with glutathione-dependent transferase and peroxidase activities. J. Biol. Chem. 272, 22934−22939
  9. Keller, P. and Simons, K. (1997) Post-Golgi biosynthetic trafficking. J. Cell Sci. 110, 3001−3009
  10. Miller, D. K., Gillard, J. W., Vickers, P. J., Sadowski, S., Leveille, C., et al. (1990) Identification and isolation of a membrane protein necessary for leukotriene production. Nature 343, 278−281
  11. Plante, H., Picard, S., Mancini, J., and Borgeat, P. (2005) 5- lipoxygenase activating protein homodimer in human neutrophils. Biochem. J. 393(Ptl), 211−218
  12. Reid, G. K., Kargman, S., Vickers, P. J., Mancini, J. A., Leveille, C., et al. (1990) Correlation between expression of 5- lipoxygenase-activating protein, 5-lipoxygenase, and cellular leukotriene synthesis. J. Biol. Chem. 265, 19818−19823
  13. Soberman, R. J. and Christmas, P. (2003) The organization and consequences of eicosanoid signaling. J. Clin. Invest. 111, 1107−1113
  14. Surviladze, Z., Draberova, L., Kovarova, M., Boubelik, M., and Draber, P. (2001) Differential sensitivity to acute cholesterol lowering of activation mediated via the high-affinity IgE receptor and Thy-1 glycoprotein. Eur. J. Immunol. 31, 1−10
  15. Samuelsson, B. (1983) Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science 220, 568−575
  16. Santamaria, A., Castellanos, E., Gomez, V., Benedit, P., Renau- Piqueras, J., et al. (2005) PTOV1 enables the nuclear translocation and mitogenic activity of flotillin-1, a major protein of lipid rafts. Mol. Cell. Biol. 25, 1900−1911
  17. Woods, J. W., Evans, J. F., Ethier, D., Scott, S., Vickers, P. J., et al. (1993) 5-Lipoxygenase and 5-lipoxygenase activating protein are localized in the nuclear envelope of activated human leukocytes. J. Exp. Med. 178, 1935−1946
  18. Kokubo, H., Helms, J. B., Ohno-Iwashita, Y., Shimada, Y., Horikoshi, Y., et al. (2003) Ultrastructural localization of flotillin- 1 to cholesterol-rich membrane microdomains, rafts in rat brain tissue. Brain Res. 965, 83−90
  19. Samuelsson, B. and Funk, C. D. (1989) Enzymes involved in the biosynthesis of leukotriene B4. J. Biol. Chem. 264, 19469− 19472
  20. Dixon, R. A., Diehl, R. E., Opas, E., Rands, E., Vickers, P. J., et al. (1990) Requirement of a 5-lipoxygenase-activating protein for leukotriene synthesis. Nature 343, 282−284
  21. Brock, T. G., McNish, R. W., and Peters-Golden, M. (1995) Translocation and leukotriene synthetic capacity of nuclear 5-lipoxygenase in rat basophilic leukemia cells and alveolar macrophages. J. Biol. Chem. 270, 21652−21658
  22. Fridriksson, E. K., Shipkova, P. A., Sheets, E. D., Holowka, D., Baird, B., et al. (1999) Quantitative analysis of phospholipids in functionally important membrane domains from RBL- 2H3 mast cells using tandem high-resolution mass spectrometry. Biochemistry 38, 8056−8063
  23. Lewis, R. A., Austen, K. F., and Soberman, R. J. (1990) Leukotrienes and other products of the 5-lipoxygenase pathway. Biochemistry and relation to pathobiology in human diseases. N. Engl. J. Med. 323, 645−655
  24. Funk, C. D. (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871−1875 https://doi.org/10.1126/science.1065323
  25. Cho, S.-H., You, H. J., Woo, C. H., Yoo, Y. J., and Kim, J. H. (2004) Rac and protein kinase $C-\delta$ regulate ERKs and cytosolic phospholipase $A_2$ in $Fc{\varepsilon}RI$ signaling to cysteinyl leukotriene synthesis in mast cells. J. Immunol. 173, 624−631
  26. Bickel, P. E., Scherer, P. E., Schnitzer, J. E., Oh, P., Lisanti, M. P., et al. (1997) Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins. J. Biol. Chem. 272, 13793−13802
  27. Brown, D. A. and Rose J. K. (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533−544
  28. Slaughter, N., Laux, I., Tu, X., Whitelegge, J., Zhu, X., et al. (2003) The flotillins are integral membrane proteins in lipid rafts that contain TCR-associated signaling components: implications for T-cell activation. Clin. Immunol. 108, 138−151
  29. Kim, J. Y., Kim, D. Y., Lee, Y. S., Lee, B. K., Lee, K.-H., et al. (2006) DA-9601, artemisia asiatica herbal extract, ameliorates airway inflammation of allergic asthma in mice. Mol. Cells 22, 104−112
  30. Simons, K. and Ehehalt, R. (2002) Cholesterol, lipid rafts, and disease. J. Clin. Invest. 110, 597−603
  31. Christmas, P., Weber, B. M., McKee, M., Brown, D., and Soberman, R. J. (2002) Membrane localization and topology of leukotriene C4 synthase. J. Biol. Chem. 277, 28902−28908
  32. Wang, H., Rapp, U. R., and Reed, J. C. (1996) Bcl-2 Targets the protein kinase Raf-1 to mitochondria. Cell 87, 629−638
  33. Gimpl, G., Burger, K., and Fahrenholz, F. (1997) Cholesterol as modulator of receptor function. Biochemstry 36, 10959− 10974
  34. Pike, L. J. (2003) Lipid rafts:bringing order to chaos. J. Lipid Res. 44, 655−667
  35. Kilsdonk, E. P., Yancey, P. G., Stoudt, G. W., Bangerter, F. W., Johnson, W. J., et al. (1995) Cellular cholesterol efflux mediated by cyclodextrins. J. Biol. Chem. 270, 17250−17256
  36. Doan, J. E. S., Windmiller, D. A., and Riches, D. W. H. (2004) Differential Regulation of TNF-R1 signaling: lipid raft dependency of $p42^{mapk/erk2}$ activation, but not $NF-{\kappa}B$ activation. J. Immunol. 172, 7654−7660
  37. Sheets, E. D., Holowka, D., and Baird, B. (1999b) Critical role for cholesterol in Lyn-mediated tyrosine phosphorylation of F$c\varepsilon$RI and their association with detergent-resistant membranes. J. Cell Biol. 145, 877−887
  38. Mandal, A. K., Skoch, J., Bacskai, B. J., Hyman, B. T., Christmas, P., et al. (2004) The membrane organization of leukotriene synthesis. Proc. Natl. Acad. Sci. USA 101, 6587−6592
  39. Brock, T. G., Paine, R. 3rd., and Peters-Golden, M. (1994) Localization of 5-lipoxygenase to the nucleus of unstimulated rat basophilic leukemia cells. J. Biol. Chem. 269, 22059− 22066
  40. Kim, B. C. and Kim J. H. (1997) Nuclear signalling by Rac GTPase: essential role of phospholipase $A_2$. Biochem. J. 326, 333−337
  41. Simons, K. and Toomre, D. (2000) Lipid rafts and signal transduction. Nature Rev. 1, 31−39