Multiple Actions of Dimethylsphingosine in 1321N1 Astrocytes

  • Lee, Yun-Kyung (Laboratory of Pharmacology, College of Pharmacy and Research Institute of Drug Development, Pusan National University) ;
  • Kim, Hyo-Lim (Laboratory of Pharmacology, College of Pharmacy and Research Institute of Drug Development, Pusan National University) ;
  • Kim, Yu-Lee (Laboratory of Pharmacology, College of Pharmacy and Research Institute of Drug Development, Pusan National University) ;
  • Im, Dong-Soon (Laboratory of Pharmacology, College of Pharmacy and Research Institute of Drug Development, Pusan National University)
  • Received : 2006.08.29
  • Accepted : 2006.12.07
  • Published : 2007.02.28

Abstract

N,N-dimethyl-D-erythro-sphingosine (DMS) is an N-methyl derivative of sphingosine and an inhibitor of protein kinase C (PKC) and sphingosine kinase (SK). In the present study, we examined the effects of DMS on intracellular $Ca^{2+}$ concentration, pH, and glutamate uptake in human 1321N1 astrocytes. DMS increased intracellular $Ca^{2+}$ concentration and cytosolic pH in a concentration-dependent manner. Pretreatment of the cells with the $G_{i/o}$ protein inhibitor PTX and the PLC inhibitor U73122 had no obvious effect. However, removal of extracellular $Ca^{2+}$ with the $Ca^{2+}$ chelator EGTA or depletion of intracellular $Ca^{2+}$ stores with thapsigargin impeded the DMS-induced increase of intracellular $Ca^{2+}$ concentration. Pretreatment of cells with $NH_4Cl$ or monensin reduced the DMS-induced $Ca^{2+}$ increase. However, inhibition of the DMS-induced $Ca^{2+}$ increase with BAPTA did not influence the DMS-induced pH increase. DMS also inhibited glutamate uptake by the 1321N1 astrocytes in a concentration-dependent manner. It also increased intracellular $Ca^{2+}$ and pH in PC12 neuronal cells. Our observations on the effects of DMS on 1321N1 astrocytes and PC12 neuronal cells point to a physiological role of DMS in the brain.

Keywords

Astrocytes;Calcium;Glutamate;PC12;pH;Sphingosine

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Alfonso, A., De la Rosa, L. A., Vieytes, M. R., and Botana, L. M. (2003) Dimethylsphingosine increases cytosolic calcium and intracellular pH in human T lymphocytes. Biochem. Pharmacol 65, 465−478
  2. Arriza, J. L., Eliasof, S., Kavanaugh, M. P., and Amara, S. G. (1997) Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc. Natl. Acad. Sci. USA 94, 4155−4160
  3. Igarashi, Y. and Hakomori, S. (1989) Enzymatic synthesis of N,N-dimethyl-sphingosine: demonstration of the sphingosine: N-methyltransferase in mouse brain. Biochem. Biophys. Res. Commun. 164, 1411−1416
  4. Izumi, H., Torigoe, T., Ishiguchi, H., Uramoto, H., Yoshida, Y., et al. (2003) Cellular pH regulators: potentially promising molecular targets for cancer chemotherapy. Cancer. Treat. Rev. 29, 541−549
  5. Kanai, Y. and Hediger, M. A. (1992) Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360, 467−471
  6. Pellerin, L. and Magistretti, P. J. (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl. Acad. Sci. USA 91, 10625−10629
  7. Storck, T., Schulte, S., Hofmann, K., and Stoffel, W. (1992) Structure, expression, and functional analysis of a $Na^+$- dependent glutamate/aspartate transporter from rat brain. Proc Natl. Acad. Sci. USA 89, 10955−10959
  8. Gonzalez, A., Pariente, J. A., Salido, G. M., and Camello, P. J. (1997) Intracellular pH and calcium signalling in rat pancreatic acinar cells. Pflugers. Arch. 434, 609−614
  9. Perry, E. K., Martin-Ruiz, C. M., and Court, J. A. (2001) Nicotinic receptor subtypes in human brain related to aging and dementia. Alcohol. 24, 63−68
  10. Rothstein, J. D., Dykes-Hoberg, M., Pardo, C. A., Bristol, L. A., Jin, L., et al. (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16, 675−686
  11. Coroneos, E., Martinez, M., McKenna, S., and Kester, M. (1995) Differential regulation of sphingomyelinase and ceramidase activities by growth factors and cytokines. Implications for cellular proliferation and differentiation. J. Biol. Chem. 270, 23305−23309
  12. Pines, G., Danbolt, N. C., Bjoras, M., Zhang, Y., Bendahan, A., et al. (1992) Cloning and expression of a rat brain Lglutamate transporter. Nature 360, 464−467 https://doi.org/10.1038/360467a0
  13. Thomas, J. A., Buchsbaum, R. N., Zimniak, A., and Racker, E. (1979) Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry 18, 2210−2218 https://doi.org/10.1021/bi00578a013
  14. Spiegel, S. and Milstien, S. (1995) Sphingolipid metabolites: members of a new class of lipid second messengers. J. Membr. Biol. 146, 225−237
  15. Fairman, W. A., Vandenberg, R. J., Arriza, J. L., Kavanaugh, M. P., and Amara, S. G. (1995) An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375, 599−603
  16. Kang, Y. K. and Park, M. K. (2005) Endoplasmic reticulum $Ca^{2+} store: regulation of $Ca^{2+}$ release and reuptake by intracellular and extracellular $Ca^{2+}$ in pancreatic acinar cells. Mol. Cells 19, 268−278
  17. Megidish, T., Cooper, J., Zhang, L., Fu, H., and Hakomori, S. (1998) A novel sphingosine-dependent protein kinase (SDK1) specifically phosphorylates certain isoforms of 14-3- 3 protein. J. Biol. Chem. 273, 21834−21845
  18. Nitschke, R., Riedel, A., Ricken, S., Leipziger, J., Benning, N., et al. (1996) The effect of intracellular pH on cytosolic $Ca^{2+}$ in HT29 cells. Pflugers. Arch. 433, 98−108
  19. Piani, D. and Fontana, A. (1994) Involvement of the cystine transport system xc- in the macrophage-induced glutamatedependent cytotoxicity to neurons. J. Immunol. 152, 3578− 3585
  20. Benveniste, E. N. (1992) Inflammatory cytokines within the central nervous system: sources, function, and mechanism of action. Am. J. Physiol. 263, C1−16
  21. Meyer zu Heringdorf, D., Lass, H., Alemany, R., Laser, K. T., Neumann, E., et al. (1998) Sphingosine kinase-mediated $Ca^{2+}$ signalling by G-protein-coupled receptors. Embo. J. 17, 2830−2837
  22. Tanaka, K. (1993) Expression cloning of a rat glutamate transporter. Neurosci. Res. 16, 149−153
  23. Young, K. W., Channing, D. R., and Nahorski, S. R. (2000) Effect of dimethylsphingosine on muscarinic M(3) receptor signalling in SH-SY5Y cells. Eur. J. Pharmacol. 402, 55−59
  24. Abdel-Ghany, M., Osusky, M., Igarashi, Y., Hakomori, S., Shalloway, D., et al. (1992) Substrate-specific modulation of Srcmediated phosphorylation of Ras and caseins by sphingosines and other substrate modulators. Biochim Biophys Acta 1137, 349−355
  25. Akaike, A., Tamura, Y., Yokota, T., Shimohama, S., and Kimura, J. (1994) Nicotine-induced protection of cultured cortical neurons against N-methyl-D-aspartate receptor-mediated glutamate cytotoxicity. Brain Res. 644, 181−187
  26. Kihara, T., Shimohama, S., Sawada, H., Honda, K., Nakamizo, T., et al. (2001) alpha 7 nicotinic receptor transduces signals to phosphatidylinositol 3-kinase to block A beta-amyloidinduced neurotoxicity. J. Biol. Chem. 276, 13541−13546
  27. Mathes, C., Fleig, A., and Penner, R. (1998) Calcium releaseactivated calcium current (ICRAC) is a direct target for sphingosine. J. Biol. Chem. 273, 25020−25030
  28. Groenendyk, J., Lynch, J., and Michalak, M. (2004) Calreticulin, $Ca^{2+}$, and calcineurin - signaling from the endoplasmic reticulum. Mol. Cells 17, 383−389
  29. Lipskaia, L. and Lompre, A. M. (2004) Alteration in temporal kinetics of $Ca^{2+}$ signaling and control of growth and proliferation. Biol. Cell 96, 55−68
  30. Himmel, H. M., Meyer zu Heringdorf, D., Windorfer, B., van Koppen, C. J., Ravens, U., et al. (1998) Guanine nucleotidesensitive inhibition of L-type $Ca^{2+}$ current by lysosphingolipids in RINm5F insulinoma cells. Mol. Pharmacol. 53, 862− 869
  31. Lee, E. H., Lee, Y. K., Im, Y. J., Kim, J. H., Okajima, F., et al. (2006) Dimethylsphingosine regulates intracellular pH and $Ca^{2+}$ in human monocytes. J. Pharmacol. Sci. 100, 289−296
  32. Sakakura, C., Sweeney, E. A., Shirahama, T., Hagiwara, A., Yamaguchi, T., et al. (1998) Selectivity of sphingosine-induced apoptosis. Lack of activity of DL-erythyro-dihydrosphingosine. Biochem. Biophys. Res. Commun. 246, 827−830
  33. Kobayashi, T., Mitsuo, K., and Goto, I. (1988) Free sphingoid bases in normal murine tissues. Eur. J. Biochem. 172, 747− 752
  34. Shin, Y., Daly, J. W., and Choi, O. H. (2000) Diverse effects of sphingosine on calcium mobilization and influx in differentiated HL-60 cells. Cell. Calcium. 27, 269−280
  35. Mano, N., Oda, Y., Yamada, K., Asakawa, N., and Katayama, K. (1997) Simultaneous quantitative determination method for sphingolipid metabolites by liquid chromatography/ionspray ionization tandem mass spectrometry. Anal. Biochem. 244, 291−300
  36. Alfonso, A., Cabado, A. G., Vieytes, M. R., and Botana, L. M. (2000) Calcium-pH crosstalks in rat mast cells: cytosolic alkalinization, but not intracellular calcium release, is a sufficient signal for degranulation. Br. J. Pharmacol. 130, 1809−1816
  37. Danbolt, N. C. (2001) Glutamate uptake. Prog. Neurobiol. 65, 1−105
  38. James-Kracke, M. R. (1992) Quick and accurate method to convert BCECF fluorescence to pHi: calibration in three different types of cell preparations. J. Cell Physiol. 151, 596−603
  39. Pushkareva, M., Khan, W. A., Alessenko, A. V., Sahyoun, N., and Hannun, Y. A. (1992) Sphingosine activation of protein kinases in Jurkat T cells. In vitro phosphorylation of endogenous protein substrates and specificity of action. J. Biol. Chem. 267, 15246−15251
  40. Igarashi, Y., Kitamura, K., Toyokuni, T., Dean, B., Fenderson, B., et al. (1990) A specific enhancing effect of N,Ndimethylsphingosine on epidermal growth factor receptor autophosphorylation. Demonstration of its endogenous occurrence (and the virtual absence of unsubstituted sphingosine) in human epidermoid carcinoma A431 cells. J. Biol. Chem. 265, 5385−5389
  41. Killoran, P. L. and Walleczek, J. (1999) Inhibition of storeoperated calcium entry in human lymphocytes by radiation: protection by glutathione. Radiat. Res. 152, 611−621
  42. Shaw, S., Bencherif, M., and Marrero, M. B. (2002) Janus kinase 2, an early target of alpha 7 nicotinic acetylcholine receptor- mediated neuroprotection against Abeta-(1-42) amyloid. J. Biol. Chem. 277, 44920−44924
  43. Kaneko, S., Maeda, T., Kume, T., Kochiyama, H., Akaike, A., et al. (1997) Nicotine protects cultured cortical neurons against glutamate-induced cytotoxicity via alpha7-neuronal receptors and neuronal CNS receptors. Brain Res. 765, 135−140
  44. Yun, M. R., Okajima, F., and Im, D. S. (2004) The action mode of lysophosphatidylcholine in human monocytes. J. Pharmacol. Sci. 94, 45−50