Association of BAF53 with Mitotic Chromosomes

  • Lee, Kiwon (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies) ;
  • Shim, Jae Hwan (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies) ;
  • Kang, Mi Jin (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies) ;
  • Kim, Ji Hye (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies) ;
  • Ahn, Jong-Seong (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies) ;
  • Yoo, Soon Ji (Department of Biology, Kyunghee University) ;
  • Kim Kwon, Yunhee (Department of Biology, Kyunghee University) ;
  • Kwon, Hyockman (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies)
  • Received : 2007.05.18
  • Accepted : 2007.08.13
  • Published : 2007.10.31


The conversion of mitotic chromosome into interphase chromatin consists of at least two separate processes, the decondensation of the mitotic chromosome and the formation of the higher-order structure of interphase chromatin. Previously, we showed that depletion of BAF53 led to the expansion of chromosome territories and decompaction of the chromatin, suggesting that BAF53 plays an essential role in the formation of higher-order chromatin structure. We report here that BAF53 is associated with mitotic chromosomes during mitosis. Immunostaining with two different anti-BAF53 antibodies gave strong signals around the DNA of mitotic preparations of NIH3T3 cells and mouse embryo fibroblasts (MEFs). The immunofluorescent signals were located on the surface of mitotic chromosomes prepared by metaphase spread. BAF53 was also found in the mitotic chromosome fraction of sucrose gradients. Association of BAF53 with mitotic chromosomes would allow its rapid activation on the chromatin upon exit from mitosis.


Supported by : Korea Research Foundation, MOST, Korea Science and Engineering Foundation


  1. Hirano, T. and Mitchison, T. J. (1994) A heterodimeric coiledcoil protein required for mitotic chromosome condensation in vitro.Cell 79, 449−458
  2. Lee, K., Kang, M. J., Kwon, S. J., Kwon, Y. K., Kim, K. W., et al. (2007) Expansion of chromosome territories with chromatin decompaction in BAF53-depleted interphase cells. Mol. Biol. Cell (in press)
  3. Manders, E. M., Visser, A. E., Koppen, A., de Leeuw, W. C., van Liere, R., et al. (2003) Four-dimensional imaging of chromatin dynamics during the assembly of the interphase nucleus. Chromosome Res. 11, 537−547
  4. Munkel, C., Eils, R., Dietzel, S., Zink, D., Mehring, C., et al. (1999) Compartmentalization of interphase chromosomes observed in simulation and experiment. J. Mol. Biol. 285, 1053−1065
  5. Sunada, R., Gorzer, I., Oma, Y., Yoshida, T., Suka, N., et al. (2005) The nuclear actin-related protein Act3p/Arp4p is involved in the dynamics of chromatin-modulating complexes. Yeast 22, 753−768
  6. Harata, M., Karwan, A., and Wintersberger, U. (1994) An essential gene of Saccharomyces cerevisiae coding for an actinrelated protein. Proc. Natl. Acad. Sci. USA 91, 8258−8262
  7. Krauss, S. W., Chen, C., Penman, S., and Heald, R. (2003) Nuclear actin and protein 4.1: essential interactions during nuclear assembly in vitro. Proc. Natl. Acad. Sci. USA 100, 10752−10757
  8. Ono, T., Losadas A., Hirano, M., Myers, M. P., Neuwald, A. F., et al. (2003) Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115, 109−121
  9. Hirano, T., Kobayashi, R., and Hirano, M. (1997) Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell 89, 511−521
  10. Szerlong, H., Saha, A., and Cairns, B. R. (2003) The nuclear actin-related proteins Arp7 and Arp9: a dimeric module that cooperates with architectural proteins for chromatin remodeling. EMBO J. 22, 3175−3187
  11. Sung, Y. H., Choi, E. Y., and Kwon, H. (2001) Identification of a nuclear protein ArpN as a component of human SWI/SNF complex and its selective association with a subset of active genes. Mol. Cells 11, 75−81
  12. Ikura, T., Ogryzko, V. V., Grigoriev, M., Groisman, R., Wang, J., et al. (2000) Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102, 463−473
  13. Kimura, K. and Hirano, T. (1997) ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation. Cell 90, 625−634
  14. Spector, D. L., Goldman, R. D., and Leinwand, L. A. (1998). Chromosome isolation for biochemical and morphological analysis; in Cells: A Laboratory Manual, pp. 49.1−49.12, CSHL Press, New York
  15. Zhao, K., Wang, W., Rando, O. J., Xue, Y., Swiderek, K., et al. (1998) Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95, 625−636
  16. Cremer, T. and Cremer, C. (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2, 292−301
  17. Fuchs, M., Gerber, J., Drapkin, R., Sif, S., Ikura, T., et al. (2001) The p400 complex is an essential E1A transformation target. Cell 106, 297−307
  18. Choi, E. Y., Park, J. A., Sung, Y. H., and Kwon, H. (2001) Generation of the dominant-negative mutant of $hArpN{\beta}$: a component of human SWI/SNF chromatin remodeling complex. Exp. Cell Res. 271, 180−188
  19. Gasser, S. M., Laroche, T., Falquet, J., Boy de la Tour, E., and Laemmli, U. K. (1986) Metaphase chromosome structure. Involvement of topoisomerase II. J. Mol. Biol. 188, 613−629
  20. Mozziconacci, J., Lavelle, C., Barbi, M., Lesne, A., and Victor, J. M. (2006) A physical model for the condensation and decondensation of eukaryotic chromosomes. FEBS Lett. 580, 368−372
  21. Shen, X., Mizuguchi, G., Hamiche, A., and Wu, C. (2000) A chromatin remodelling complex involved in transcription and DNA processing. Nature 406, 541−544
  22. Lee, J. H., Chang, S. H., Shim, J. H., Lee, J. Y., Yoshida, M., et al. (2003) Cytoplasmic localization and nucleo-cytoplasmic shuttling of BAF53, a component of chromatin-modifying complexes. Mol. Cells 16, 78−83
  23. Goodson, H. V. and Hawse, W. F. (2002) Molecular evolution of the actin family. J. Cell Sci. 115, 2619−1622
  24. Dey, A., Ellenberg, J., Farina, A., Coleman, A. E., Maruyama, T., et al. (2000) A bromodomain protein, MCAP, associates with mitotic chromosomes and affects G2-to-M transition. Mol. Cell. Biol. 20, 6537−6549
  25. Galarneau, L., Nourani, A., Boudreault, A. A., Zhang, Y., Heliot, L., et al. (2000) Multiple links between the NuA4 histone acetyltransferase complex and epigenetic control of transcription. Mol. Cell 5, 927−937
  26. Rando, O. J., Zhao, K., Janmey, P., and Crabtree, G. R. (2002) Phosphatidylinositol-dependent actin filament binding by the SWI/SNF-like BAF chromatin remodeling complex. Proc. Natl. Acad. Sci. USA 99, 2824−2829
  27. Wood, M. A., McMahon, S. B., and Cole, M. D. (2000) An ATPase/ helicase complex is an essential cofactor for oncogenic transformation by c-Myc. Mol. Cell 5, 321−330