Effect of Disodium Fumarate on In vitro Rumen Fermentation of Different Substrates and Rumen Bacterial Communities as Revealed by Denaturing Gradient Gel Electrophoresis Analysis of 16S Ribosomal DNA

  • Mao, S.Y. (College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Zhang, G. (College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Zhu, W.Y. (College of Animal Science and Technology, Nanjing Agricultural University)
  • Received : 2006.04.25
  • Accepted : 2006.11.02
  • Published : 2007.04.01


Two experiments were conducted to investigate the effects of disodium fumarate on the in vitro rumen fermentation profiles of different substrates and microbial communities. In experiment 1, nine diets (high-forage diet (forage:concentrate, e.g. F:C = 7:3, DM basis), medium-forage diet (F:C = 5:5, DM basis), low-forage diet(F:C = 1:9, DM basis), cracked corn, cracked wheat, soluble starch, tall elata (Festuca elata), perennial ryegrass and rice straw) were fermented in vitro by rumen microorganisms from local goats. The results showed that during 24 h incubations, for all substrates, disodium fumarate increased (p<0.05) the gas production, and tended to increase (p<0.10) the acetate, propionate and total VFA concentration and decrease the ratio of acetate to propionate, whereas no treatment effect was observed for the lactate concentration. The apparent DM loss for tall elata, perennial ryegrass and rice straw increased (p<0.05) with the addition of disodium fumarate. With the exception of tall elata, perennial ryegrass and rice straw, disodium fumarate addition increased the final pH (p<0.05) for all substrates. In experiment 2, three substrates (a high-forage diet, a medium-forage diet and a high concentrate diet) were fermented by mixed rumen microbes in vitro. A polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique was applied to compare microbial DNA fingerprints between substrates at the end of 24 h incubation. The results showed that when Festuca elata was used as substrate, the control and disodium fumarate treatments had similar DGGE profiles, with their similarities higher than 96%. As the ratio of concentrate increased, however, the similarities in DGGE profiles decreased between the control and disodium fumarate treatment. Overall, these results suggest that disodium fumarate is effective in increasing the pH and gas production for the diets differing in forage: concentrate ratio, grain cereals and soluble starch, and in increasing dry matter loss for the forages (tall elata, perennial ryegrass and rice straw) in vitro, whereas its effect on changes of ruminal microbial community may largely depend on the general nature of the substrate.


Supported by : National Natural Science Foundation of China


  1. Asanuma, N., M. Iwamoto and T. Hino. 1999. Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. J. Dairy Sci. 82:780-787.
  2. Castillo, C., J. L. Benedito, J. Mendezb, V. Pereira, M. Lopez- Alonso, M. Miranda and J. Hernandez. 2004. Organic acids as a substitute for monensin in diets for beef cattle. Anim. Feed. Sci. Tech. 115:101-116.
  3. Muyzer, G., E. C. de Waal and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes encoding for 16s rRNA. Appl. Environ. Microbiol. 59:695-700.
  4. Nubel, U., B. Engelen, A. Felske, J. Snaidr, A. Wieshuber, R. I. Amann, W. Ludwig and H. Backhaus. 1996. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymixa detected by temperature gradient gel electrophoresis. J. Bacteriol. 178:5636-5643.
  5. Singh, G. P. and D. Debasis. 2005. Effect of different level of monensin supplemented with cold process urea molasses mineral block on in vitro rumen fermentation at different days of adaptation with monensin. Asian-Aust. J. Anim. Sci. 18:320-325.
  6. Theodorou, M. K., B. A. Williams, M. S. Dhanoa, A. B. McAllan and J. France. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feed. Anim. Feed. Sci. Technol. 48:185-197.
  7. Zoetendal, E. G.., A. D. L. Akkermans and W. M. de Vos. 1998. Temperature gradient gel electrophoresis analysis of 16s rRNA from human faecal samples reveals stable and host specific communities of active bacteria. Appl. Environ. Microbiol. 64:3854-3859.
  8. Baker, S. B. and W. H. Summerson. 1941. The colorimetric determination of lactic acid in biological material. J. Biol. Chem. 138:535-555.
  9. Zhu, W. Y., B. A. Williams, S. R. Konstantinov, S. Tamminga, de Vos. W. M and A. D. Akkermans. 2003. Analysis of 16S rDNA reveals bacterial shift during in vitro fermentation of fermentable carbohydrate using piglet faeces as inoculum. Anaerobe. 9:175-180.
  10. Simpson, J. M., V. J. McCracken, B. A. White, H. R. Gaskin and R. I. Mackie. 1999. Application of denaturing gradient gel electrophoresis for the analysis of the porcine gastrointestinal microbiota. J. Microbiol. Meth. 36:167-179.
  11. Qin, W. L. 1983. Determination of rumen volatile fatty acids by means of gas chromatography. (in Chinese, with English abstract). J. Nanjing Agric. College. 3:82-89.
  12. Sanguinetti, C. J., N. E. Dias and A. J. Simpson. 1994. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechnuques. 17:914-921.
  13. Nisbet, D. J. and S. A. Martin. 1990. Effect of dicarboxylic acids and Aspergillus oryzae fermentation extract on lactate uptake by the ruminal bacterium Selenomonas ruminantium. Appl. Environ. Microbiol. 56:3515-3518.
  14. Russell, J. B. and P. J. van Soest. 1984. In vitro ruminal fermentation of organic acids common in forage. Appl. Environ. Microbiol. 47:155-159.
  15. Weatherburn, M. W. 1967. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 39:971-974.
  16. Martin, S. A. and C. M. Park. 1996. Effect of extracellular hydrogen on organic acid utilization by the ruminal bacterium Selenomonas ruminantium. Curr. Microbiol. 32:327-331.
  17. Russell, J. B. and H. J. Strobel. 1988. Effects of additives on in vitro ruminal fermentation: A comparison of monensin and bacitracin, another gram-positive antibiotic. J. Anim. Sci. 66:552-558.
  18. Khampa, S., M. Wanapat, C. Wachirapakorn, N. Nontaso, M. A. Wattiaux and P. Rowlison. 2006. Effect of levels of sodium DL-malate supplementation on ruminal fermentation efficiency of concentrates containing high levels of cassava chip in dairy steers. Asian-Aust. J. Anim. Sci. 19:368-375.
  19. Carro, M. D. and M. J. Ranilla. 2003. Effect of the addition of malate on in vitro rumen fermentation of cereal grains. Br. J. Nutr. 89:181-188.
  20. Lopez, C., C. Valdes, C. J. Newbold and R. J. Wallace. 1999. Influence of sodium fumarate addition on rumen fermentation in vitro. Br. J. Nutr. 81:59-64.
  21. Gillan, D. C., G. A. Speksnijder, G. Zwart and Ridder. 1998. Genetic diversity of the biofilm covering Montacuta ferruginosa (Mollusca,Bivalvia) as evaluated by denaturing gradient gel electrophoresis analysis and cloning of PCRamplified gene fragments coding for 16S rRNA. Appl. Environ. Microbiol. 64:3464-3472.
  22. Phipps, R. H., J. I. D. Wilkinson, L. J. Jonker, M. Tarrant, A. K. Jones and A. Hodge. 2000. Effect of monensin on milk production of holstein-friesian dairy cows. J. Dairy Sci. 83:2789-2794.
  23. Callaway, T. R. and S. A. Martin.1996. Effects of organic acid and monensin treatment on in vitro mixed ruminal microorganism fermentation of cracked maize. J. Anim. Sci. 74:1982-1989.
  24. Martin, S. A. 1998. Manipulation of ruminal fermentation with organic acids: a review. J. Anim. Sci. 76:3123-3132.
  25. Vaughan, E. E., G. H. J. Heilig, E. G. Zoetendal, R. Satokari, J. K. Collins, A. D. L. Akkermans and W. M. de Vos. 1999. Molecular approaches to study probiotic bacteria. Trends Food Sci. Technol. 10:400-404.
  26. Russell, J. B. and H. J. Strobel. 1989. Effects of ionophores on ruminal fermentation. Appl. Environ. Microbiol. 55:1-6.

Cited by

  1. The use of molecular techniques based on ribosomal RNA and DNA for rumen microbial ecosystem studies: a review vol.35, pp.2, 2008,
  2. vol.65, pp.4, 2011,
  3. Molecular tools for deciphering the microbial community structure and diversity in rumen ecosystem vol.95, pp.5, 2012,
  4. Effects of Acarbose Addition on Ruminal Bacterial Microbiota, Lipopolysaccharide Levels and Fermentation Characteristics In vitro vol.27, pp.12, 2014,
  5. Effect of Gynosaponin on Rumen <i>In vitro</i> Methanogenesis under Different Forage-Concentrate Ratios vol.27, pp.8, 2014,
  6. rumen fermentation, methanogenesis and methanogens vol.87, pp.3, 2015,
  7. Dose and time response of ruminally infused algae on rumen fermentation characteristics, biohydrogenation and Butyrivibrio group bacteria in goats vol.7, pp.1, 2016,
  8. Quantification of organic acids in ruminal in vitro batch culture fermentation supplemented with fumarate using a herb mix as a substrate vol.96, pp.1, 2016,
  9. Effects of Disodium Fumarate on In Vitro Rumen Fermentation, The Production of Lipopolysaccharide and Biogenic Amines, and The Rumen Bacterial Community vol.74, pp.11, 2017,