Rpn10p is a Receptor for Ubiquitinated Gcn4p in Proteasomal Proteolysis

  • Seong, Ki Moon (School of Life Sciences and Biotechnology, Korea University) ;
  • Baek, Je-Hyun (School of Life Sciences and Biotechnology, Korea University) ;
  • Ahn, Byung-Yoon (School of Life Sciences and Biotechnology, Korea University) ;
  • Yu, Myeong-Hee (Functional Proteomics Center, Korea Institute of Science and Technology) ;
  • Kim, Joon (School of Life Sciences and Biotechnology, Korea University)
  • Received : 2007.01.10
  • Accepted : 2007.04.13
  • Published : 2007.10.31

Abstract

GCN4 is a typical eukaryotic transcriptional activator that is implicated in the expression of many genes involved in amino acids and purine biosyntheses under stress conditions. It is degraded by 26S proteasomes following ubiquitination. However, the immediate receptor for ubiquitinated Gcn4p has not yet been identified. We investigated whether ubiquitinated Gcn4p binds directly to Rpn10p as the ubiquitinated substrate receptor of the 26S proteasome. We found that the level of Gcn4p increased in cells deleted for Rpn10p but not in cells deleted for RAD23 and DSK2, the other ubiquitinated substrate receptors and, unlike Rpn10p, neither of these proteins recognized ubiquitinated Gcn4p. These results suggest that Rpn10p is the receptor that binds the polyubiquitin chain during ubiquitin-dependent proteolysis of Gcn4p.

Keywords

26S Proteasome;Gcn4p;Polyubiquitinated Substrate Receptors;Rpn10p

Acknowledgement

Supported by : Korean Ministry of Science & Technology

References

  1. Finley, D., Sadis, S., Monia, B. P., Boucher, P., Ecker, D. J., et al. (1994) Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant. Mol. Cell. Biol. 14, 5501-5509 https://doi.org/10.1128/MCB.14.8.5501
  2. Glickman, M. H., Rubin, D. M., Fried, V. A., and Finley, D. (1998) The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol. Cell. Biol. 18, 3149-3162 https://doi.org/10.1128/MCB.18.6.3149
  3. Hinnebusch, A. G. (2005) Translational regulation of GCN4 and the general amino acid control of yeast. Annu. Rev. Microbiol. 59, 407-450 https://doi.org/10.1146/annurev.micro.59.031805.133833
  4. Hope, I. A. and Struhl, K. (1985) GCN4 protein, synthesized in vitro, binds HIS3 regulatory sequences: implications for general control of amino acid biosynthetic genes in yeast. Cell 43, 177-188 https://doi.org/10.1016/0092-8674(85)90022-4
  5. Kominami, K., Okura, N., Kawamura, M., DeMartino, G. N., Slaughter, C. A., et al. (1997) Yeast counterparts of subunits S5a and p58 (S3) of the human 26S proteasome are encoded by two multicopy suppressors of nin1-1. Mol. Biol. Cell. 8, 171-187 https://doi.org/10.1091/mbc.8.1.171
  6. Kornitzer, D., Raboy, B., Kulka, R. G., and Fink, G. R. (1994) Regulated degradation of the transcription factor Gcn4. EMBO J. 13, 6021-6030
  7. Natarajan, K., Meyer, M. R., Jackson, B. M., Slade, D., Roberts, C., et al. (2001) Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol. Cell. Biol. 21, 4347-4368 https://doi.org/10.1128/MCB.21.13.4347-4368.2001
  8. Pries, R., Bomeke, K., Irniger, S., Grundmann, O., and Braus, G. H. (2002) Amino acid-dependent Gcn4p stability regulation occurs exclusively in the yeast nucleus. Eukaryot. Cell 1, 663-672 https://doi.org/10.1128/EC.1.5.663-672.2002
  9. Rao, H. and Sastry, A. (2002) Recognition of specific ubiquitin conjugates is important for the proteolytic functions of the ubiquitin-associated domain proteins Dsk2 and Rad23. J. Biol. Chem. 277, 11691-11695 https://doi.org/10.1074/jbc.M200245200
  10. Sherman, F. (1991) Getting started with yeast. Methods Enzymol. 194, 3-21
  11. Wilkinson, C. R., Seeger, M., Hartmann-Petersen, R., Stone, M., Wallace, M., et al. (2001) Proteins containing the UBA domain are able to bind to multi-ubiquitin chains. Nat. Cell. Biol. 3, 939-943 https://doi.org/10.1038/ncb1001-939
  12. Yang, R., Wek, S. A., and Wek, R. C. (2000) Glucose limitation induces GCN4 translation by activation of Gcn2 protein kinase. Mol. Cell. Biol. 20, 2706-2717 https://doi.org/10.1128/MCB.20.8.2706-2717.2000
  13. Chen, L. and Madura, K. (2002) Rad23 promotes the targeting of proteolytic substrates to the proteasome. Mol. Cell. Biol. 22, 4902-4913 https://doi.org/10.1128/MCB.22.13.4902-4913.2002
  14. Fu, H., Sadis, S., Rubin, D. M., Glickman, M., van Nocker, S., et al. (1998) Multiubiquitin chain binding and protein degradation are mediated by distinct domains within the 26 S proteasome subunit Mcb1. J. Biol. Chem. 273, 1970-1981 https://doi.org/10.1074/jbc.273.4.1970
  15. Irniger, S. and Braus, G. H. (2003) Controlling transcription by destruction: the regulation of yeast Gcn4p stability. Curr. Genet. 44, 8-18 https://doi.org/10.1007/s00294-003-0422-3
  16. Madura, K. (2004) Rad23 and Rpn10: perennial wallflowers join the melee. Trends Biochem. Sci. 29, 637-640 https://doi.org/10.1016/j.tibs.2004.10.008
  17. Chi, Y., Huddleston, M. J., Zhang, X., Young, R. A., Annan, R. S., et al. (2001) Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase. Genes Dev. 15, 1078-1092 https://doi.org/10.1101/gad.867501
  18. Hinnebusch, A. G. (1984) Evidence for translational regulation of the activator of general amino acid control in yeast. Proc. Natl. Acad. Sci. USA 81, 6442-6446
  19. Penney, M., Wilkinson, C., Wallace, M., Javerzat, J. P., Ferrell, K., et al. (1998) The Pad1+ gene encodes a subunit of the 26 S proteasome in fission yeast. J. Biol. Chem. 273, 23938- 23945 https://doi.org/10.1074/jbc.273.37.23938
  20. Won, J., Chung, S. Y., Kim, S. B., Byun, B. H., Yoon, Y. S., et al. (2006) Dose-dependent UV stabilization of p53 in cultured human cells undergoing apoptosis is mediated by poly(ADPribosyl) ation. Mol. Cells 21, 218-223
  21. Elsasser, S., Gali, R. R., Schwickart, M., Larsen, C. N., Leggett, D. S., et al. (2002) Proteasome subunit Rpn1 binds ubiquitinlike protein domains. Nat. Cell. Biol. 4, 725-730 https://doi.org/10.1038/ncb845
  22. Mayor, T., Lipford, J. R., Graumann, J., Smith, G. T., and Deshaies, R. J. (2005) Analysis of polyubiquitin conjugates reveals that the Rpn10 substrate receptor contributes to the turnover of multiple proteasome targets. Mol. Cell. Proteomics 4, 741-751 https://doi.org/10.1074/mcp.M400220-MCP200
  23. Xie, Y. and Varshavsky, A. (2002) UFD4 lacking the proteasome- binding region catalyses ubiquitination but is impaired in proteolysis. Nat. Cell. Biol. 4, 1003-1007 https://doi.org/10.1038/ncb889
  24. Elsasser, S. and Finley, D. (2005) Delivery of ubiquitinated substrates to protein-unfolding machines. Nat. Cell. Biol. 7, 742-749 https://doi.org/10.1038/ncb0805-742
  25. Puig, O., Caspary, F., Rigaut, G., Rutz, B., Bouveret, E., et al. (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24, 218-229 https://doi.org/10.1006/meth.2001.1183
  26. Meimoun, A., Holtzman, T., Weissman, Z., McBride, H. J., Stillman, D. J., et al. (2000) Degradation of the transcription factor Gcn4 requires the kinase Pho85 and the SCF(CDC4) ubiquitin-ligase complex. Mol Biol Cell, 11, 915-927 https://doi.org/10.1091/mbc.11.3.915
  27. Schwartz, A. L. and Ciechanover, A. (1999) The ubiquitinproteasome pathway and pathogenesis of human diseases. Annu. Rev. Med. 50, 57-74 https://doi.org/10.1146/annurev.med.50.1.57
  28. Shemer, R., Meimoun, A., Holtzman, T., and Kornitzer, D. (2002) Regulation of the transcription factor Gcn4 by Pho85 cyclin PCL5. Mol. Cell. Biol. 22, 5395-5404 https://doi.org/10.1128/MCB.22.15.5395-5404.2002
  29. Elsasser, S., Chandler-Militello, D., Muller, B., Hanna, J., and Finley, D. (2004) Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J. Biol. Chem. 279, 26817-26822. https://doi.org/10.1074/jbc.M404020200
  30. Verma, R., Oania, R., Graumann, J., and Deshaies, R. J. (2004) Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 118, 99- 110 https://doi.org/10.1016/j.cell.2004.06.014
  31. Engelberg, D., Klein, C., Martinetto, H., Struhl, K., and Karin, M. (1994) The UV response involving the Ras signaling pathway and AP-1 transcription factors is conserved between yeast and mammals. Cell 77, 381-390 https://doi.org/10.1016/0092-8674(94)90153-8
  32. Lambertson, D., Chen, L., and Madura, K. (1999) Pleiotropic defects caused by loss of the proteasome-interacting factors Rad23 and Rpn10 of Saccharomyces cerevisiae. Genetics 153, 69-79
  33. Saeki, Y., Saitoh, A., Toh-e, A., and Yokosawa, H. (2002) Ubiquitin- like proteins and Rpn10 play cooperative roles in ubiquitin- dependent proteolysis. Biochem. Biophys. Res. Commun. 293, 986-992 https://doi.org/10.1016/S0006-291X(02)00340-6
  34. Funakoshi, M., Sasaki, T., Nishimoto, T., and Kobayashi, H. (2002) Budding yeast Dsk2p is a polyubiquitin-binding protein that can interact with the proteasome. Proc. Natl. Acad. Sci. USA 99, 745-750