DOI QR코드

DOI QR Code

Effects of Different Selenium Sources on Performance, Carcass Characteristics, Plasma Glutathione Peroxidase Activity and Selenium Deposition in Finishing Hanwoo Steers

  • Lee, S.H. ;
  • Park, B.Y. ;
  • Yeo, J.M. ;
  • Lee, Sung S. ;
  • Lee, J.H. ;
  • Ha, J.K. ;
  • Kim, W.Y.
  • Received : 2006.05.10
  • Accepted : 2006.08.20
  • Published : 2007.02.01

Abstract

This study was conducted to determine effects of different selenium (Se) sources on performance, carcass characteristics, blood measures (whole blood Se concentration and plasma glutathione peroxidase (GSH-Px) activity), and Se concentrations in tissues of finishing Hanwoo steers (Korean native steers). Twenty finishing Hanwoo steers (average body weight=536${\pm}$23.4 kg, average age=approximately 20 months) were allotted to treatments in four groups of five steers per pen for 16 weeks preceding slaughter. Treatments were control (CON), spent mushroom composts from Se-enriched mushrooms (Se-SMC), selenized yeast (Se-Y), and sodium selenite (SS). Dietary Se levels of all treatments except CON were 0.9 mg Se/kg on the dry matter basis. Body weight was measured at the first and final day of trial, and blood samples were collected to analyze whole blood Se concentration and plasma GSH-Px activity at 2, 4, 8, and 16 weeks. At the end of trial, steers were slaughtered to collect muscle and liver samples for their Se analyses, and carcass data were recorded. In terms of dry matter intake, body weight gain and carcass characteristics, no significant differences among treatments were observed. Whole blood Se concentrations were significantly higher (p<0.05) for Se-SMC and Se-Y treatments than for CON at each collection period, with no significant difference between SS and CON. For weeks 2 and 8, there was no significant difference for whole blood Se concentration between Se-SMC and Se-Y, but for weeks 4 and 16, Se-Y treatments were significantly higher (p<0.05) than Se-SMC. No differences were observed for plasma GSH-Px activity between Se-SMC and Se-Y. The Se concentrations in hind leg and liver were significantly different among treatments (p<0.05) and those in both tissues ranked the greatest in Se-Y, followed by Se-SMC, SS, and CON treatments. However, tissue Se concentration for SS was not different from that for CON. These results showed that feeding organic Se sources such as Se-SMC and Se-Y enhanced Se concentration in tissues, while SS, the most common supplement of inorganic Se, was inefficient in Se deposition. Even though Se-Y had a higher Se concentration in tissues than Se-SMC, replacing Se-Y with Se-SMC in diets of beef steers would be an inexpensive way to increase Se concentration in beef.

Keywords

Se-SMC;Selenized Yeast;Sodium Selenite;Plasma GSH-Px;Se Deposition;Hanwoo Steers

References

  1. DeVore, V. R., G. L. Colnago, L. S. Jensen and B. E. Greene. 1983. Thiobarbituric acid values and glutathione peroxidase activity in meat from chickens fed a Se supplemented diet. J. Food Sci. 48:300-301. https://doi.org/10.1111/j.1365-2621.1983.tb14860.x
  2. Finley, J. W. 1999. Does selenium accumulation in meat confer a health benefit to the consumer? Proc. Am. Soc. Anim. Sci. Available: http://www.asas.org/JAS/symposia/proceedings/09 11.pdf. Accessed Nov. 24, 2005.
  3. Gunter, S. A., P. A. Beck and J. M. Phillips. 2003. Effects of supplementary selenium source on the performance and blood measurements in beef cows and their calves. J. Anim. Sci. 81:856-864. https://doi.org/10.2527/2003.814856x
  4. Hidiroglou, M. D., P. Heanley and K. J. Jenkins. 1968. Metabolism of inorganic selenium in rumen bacteria. Can. J. Physiol. Pharm. 46:229-232. https://doi.org/10.1139/y68-038
  5. Kim, Y. Y. and D. C. Mahan. 2001. Comparative effects of high dietary levels of organic and inorganic selenium on selenium toxicity of growing-finishing pigs. J. Anim. Sci. 79:942-948. https://doi.org/10.2527/2001.794942x
  6. Lawler, T. L., J. B. Taylor, J. W. Finley and J. S. Caton. 2004. Effect of supranutritional and organically bound selenium on performance, carcass characteristics, and selenium distribution in finishing beef steers. J. Anim. Sci. 82:1488-1493. https://doi.org/10.2527/2004.8251488x
  7. Lee, S. H., W. S. Kwak and W. Y. Kim. 2005. Studies on the selenium type and metabolism of selenium accumulation in the selenium-enriched mushroom, Flammulina velutipes, and its spent mushroom composts. J. Anim. Sci. Technol. (Kor.) 47:305-316. https://doi.org/10.5187/JAST.2005.47.2.305
  8. Ministry of Agriculture & Forestry (MAF) and National Livestock Research Institute (NLRI). 2002. Korean feeding standard for Korean cattle (Hanwoo), Korea
  9. Ortman, K. and B. Pehrson. 1999. Effect of selenate as a feed supplement to dairy cows in comparison to selenite and selenium yeast. J. Anim. Sci. 77:3365-3370. https://doi.org/10.2527/1999.77123365x
  10. Payne, R. L., T. K. Lavergne and L. L. Southern. 2005. Effect of inorganic versus organic selenium on hen production and egg selenium concentration. Poult. Sci. 84:232-237. https://doi.org/10.1093/ps/84.2.232
  11. Steel, R. G. D. and J. H. Torrie. 1980. Principles and Procedures of Statistics: A Biometrical Approach (2nd Ed.). McGraw-Hill Book Co., New York.
  12. Van Ryssen, J. B. J., J. T. Deagen, M. A. Beilstein and P. D. Whanger. 1989. Comparative metabolism of organic and inorganic selenium by sheep. J. Agric. Food Chem. 37:1358- 1363. https://doi.org/10.1021/jf00089a033
  13. Wu, L., X. Guo and G. S. Banuelos. 1997. Accumulation of selenoamino acids in legume and grass plant species grown in selenium-laden soils. Environ. Toxicol. Chem. 16:491-497. https://doi.org/10.1002/etc.5620160314
  14. AOAC. 1995. Official Methods of Analysis. 16th ed. Association of Official Analytical Chemists, Washington, DC.
  15. Hintze, K. J., G. P. Lardy, M. J. Marchello and J. W. Finley. 2001. Areas with high concentrations of selenium in the soil and forage produce beef with enhanced concentrations of selenium. J. Agric. Food Chem. 49:1062-1067. https://doi.org/10.1021/jf000699s
  16. Stefanka, Z., I. Ipolyi, M. Dernovics and P. Fodor. 2001. Comparison of sample preparation methods based on proteolytic enzymatic processes for Se-speciation of edible mushroom (Agaricus bisporus) samples. Talanta 55:437-447. https://doi.org/10.1016/S0039-9140(01)00398-8
  17. Gerloff, B. J. 1992. Effect of Se supplementation on dairy cattle. J. Anim. Sci. 70:3934-3940. https://doi.org/10.2527/1992.70123934x
  18. Lee, S. H., B. Y. Park and W. Y. Kim. 2004. Effects of spent composts of selenium-enriched mushrooms on carcass characteristics, plasma glutathione peroxidase activity, and selenium deposition in finishing Hanwoo steers. J. Anim. Sci. Technol. (Kor.) 46:799-810. https://doi.org/10.5187/JAST.2004.46.5.799
  19. Peterson, P. J. and D. J. Spedding. 1963. The excretion by sheep of $^{75}selenium$ incorporated into red clover (Trifolium pratense L.): The chemical nature of the excreted selenium and its uptake by three plant species. N.Z. J. Agric. Res. 6:13-23. https://doi.org/10.1080/00288233.1963.10419316
  20. Wardeh, M. F. 1981. Models for estimating energy and protein utilization for feeds. Ph.D. Dissertation; Utah State Univ., Logan.
  21. Cristaldi, L. A., L. R. McDowell, C. D. Buergelt, P. A. Davis, N. S. Wilkinson and F. G. Martin. 2005. Tolerance of inorganic selenium in wether sheep. Small Rumin. Res. 56:205-213. https://doi.org/10.1016/j.smallrumres.2004.06.001
  22. Ehlig, C. F., D. E. Hogue, W. H. Allaway and D. J. Hamm. 1967. Fate of selenium from selenite or selenomethionine with or without vitamin E in lambs. J. Nutr. 92:121-126. https://doi.org/10.1093/jn/92.1.121
  23. Mahan, D. C., T. R. Cline and B. Richert. 1999. Effects of dietary levels of selenium-enriched yeast and sodium selenite as selenium sources fed to growing-finishing pigs on performance, tissue selenium, serum glutathione peroxidase activity, carcass characteristics, and loin quality. J. Anim. Sci. 77:2172-2179. https://doi.org/10.2527/1999.7782172x
  24. O'Grady, M. N., F. J. Monahan, R. J. Fallon and P. Allen. 2001. Effects of dietary supplementation with vitamin E and organic selenium on the oxidative stability of beef. J. Anim. Sci. 79:2827-2834. https://doi.org/10.2527/2001.79112827x
  25. Whanger, P. D., P. H. Weswig and O. H. Muth. 1968. Metabolism of $^{75}Se$-selenite and $^{75}Se$-selenomethionine by rumen microorganisms. Fed. Proc. 27:418 (Abstr.)
  26. Scholz, R. W. and L. J. Hutchinson. 1979. Distribution of glutathione peroxidase activity and selenium in the blood of dairy cows. Am. J. Vet. Res. 40:245-249.
  27. Knowles, S. O., N. D. Grace, K. Wurms and J. Lee. 1999. Significance of amount and form of dietary selenium on blood, milk, and casein selenium concentrations in grazing cows. J. Dairy Sci. 82:429-437. https://doi.org/10.3168/jds.S0022-0302(99)75249-5
  28. Wright, P. L. and M. C. Bell. 1966. Comparative metabolism of selenium and tellurium in sheep and swine. Am. J. Physiol. 211:6-10.
  29. Lee, S. H., B. Y. Park, S. S. Lee, N. J. Choi, J. H. Lee, J. M. Yeo, J. K. Ha, W. J. Maeng and W. Y. Kim. 2006. Effects of spent composts of selenium-enriched mushroom and sodium selenite on plasma glutathione peroxidase activity and selenium deposition in finishing Hanwoo steers. Asian-Aust. J. Anim. Sci. 19:984-991. https://doi.org/10.5713/ajas.2006.984
  30. SAS Institute Inc. 2000. $SAS/STAT^{\circledR}$ User's Guide (Release 8.1 ed.). Statistics, SAS Inst, Inc., Cary, NC.
  31. Faustman, C., R. G. Cassens, D. M. Schaefer, D. R. Buege, S. N. Williams and K. K. Scheller. 1989. Improvement of pigment and lipid stability in Holstein steer beef by dietary supplementation with vitamin E. J. Food Sci. 54:858-862. https://doi.org/10.1111/j.1365-2621.1989.tb07899.x
  32. Lawrence, R. A. and R. F. Burk. 1976. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem. Biophys. Res. Commun. 71:952-958. https://doi.org/10.1016/0006-291X(76)90747-6
  33. Jacobsson, S. O. 1966. Uptake of $^{75}Se$ in tissues of sheep after administration of a single dose of $^{75}Se$-sodium selenite, $^{75}Se$-selenomethionine or $^{75}Se$-selenocystine. Acta Vet. Scand. 7:303-320.
  34. Awadeh, F. T., M. M. Abdelrahman, R. L. Kincaid and J. W. Finley. 1998. Effect of selenium supplements on the distribution of selenium among serum proteins in cattle. J. Dairy Sci. 81:1089-1094. https://doi.org/10.3168/jds.S0022-0302(98)75670-X
  35. McConnell, K. P. and J. L. Hoffman. 1972. Methionineselenomethionine parallels in rat liver polypeptide chain synthesis. Fed. Proc. 31:691 (Abstr)
  36. Animal Products Grading Service (APGS). 2006. Grade Rule for Cattle Carcass in Korea. Available: http://www.apgs.co.kr/ 02class/02.asp Accessed May 7, 2006
  37. Combs Jr., G. F. and S. B. Combs. 1986. The Role of Selenium in Nutrition. Academic Press. Inc., New York, NY.
  38. Kelly, M. P. and R. F. Power. 1995. Fractionation and identification of the major selenium containing compounds in selenized yeast. J. Dairy Sci. 78(Supp. 1):237 (Abstr.).
  39. Butler, G. W. and P. J. Peterson. 1961. Aspects of the fecal excretion of selenium by sheep. N.Z. J. Agric. Res. 4:484-491. https://doi.org/10.1080/00288233.1961.10431606

Cited by

  1. Effect of selenium supplementation on performance, cost economics, and biochemical profile of Nellore ram lambs vol.8, pp.9, 2015, https://doi.org/10.14202/vetworld.2015.1150-1155
  2. Organic selenium supplementation increased selenium concentrations in ewe and newborn lamb blood and in slaughter lamb meat compared to inorganic selenium supplementation vol.50, pp.1, 2008, https://doi.org/10.1186/1751-0147-50-7

Acknowledgement

Supported by : Ministry of Agriculture and Forestry in Korea