Determination of Differences in the Nonvolatile Metabolites of Pine-Mushrooms (Tricholoma matsutake Sing.) According to Different Parts and Heating Times Using $^1H$ NMR and Principal Component Analysis

  • Cho, In-Hee (Department of Food Science and Technology, Ewha Womans University) ;
  • Kim, Young-Suk (Department of Food Science and Technology, Ewha Womans University) ;
  • Lee, Ki-Won (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Choi, Hyung-Kyoon (College of Pharmacy, Chung-Ang University)
  • Published : 2007.10.30


The differences in the nonvolatile metabolites of pine-mushrooms (Tricholoma matsutake Sing.) according to different parts and heating times were analyzed by applying principal component analysis (PCA) to $^1H$ nuclear magnetic resonance (NMR) spectroscopy data. The $^1H$ NMR spectra and PCA enabled the differences of nonvolatile metabolites among mushroom samples to be clearly observed. The two parts of mushrooms could be easily discriminated based on PC 1, and could be separated according to different heattreated times based on PC 3. The major peaks in the $^1H$ NMR spectra that contributed to differences among mushroom samples were assigned to trehalose, succinic acid, choline, leucine/isoleucine, and alanine. The content of trehalose was higher in the pileus than in the stipe of all mushroom samples, whereas succinic acid, choline, and leucine/isoleucine were the main components in the stipe. Heating resulted in significant losses of alanine and leucine/isoleucine, whereas succinic acid, choline, and trehalose were the most abundant components in mushrooms heat-treated for 3 min and 5 min, respectively.


  1. Asenjo, J. A., P. R. I. Rapaport, J. Aracena, E. Goles, and B. A. Andrews. 2007. A discrete mathematical model applied to genetic regulation and metabolic networks. J. Microbiol. Biotechnol. 17: 496-510
  2. Beecher, T. M., N. Magan, and K. S. Burton. 2001. Water potentials and soluble carbohydrate concentrations in tissues of freshly harvested and stored mushrooms (Agaricus bisporus). Postharvest Biol. Technol. 22: 121-131
  3. Brescia, M. A., V. Caldarola, A. De Giglio, D. Benedetti, F. P. Fanizzi, and A. Sacco. 2002. Characterization of the geographical origin of Italian red wines based on traditional and nuclear magnetic resonance spectrometric determinations. Anal. Chim. Acta 458: 177-186
  4. Campo, G. D., J. I. Santos, N. Iturriza, I. Berregi, and A. Munduate. 2006. Use of the $^1H$ nuclear magnetic spectra signals from polyphenols and acids for chemometric characterization of cider apple juices. J. Agric. Food Chem. 54: 3095-3100
  5. Card, A. and C. Avisse. 1997. Comparative study of the aroma of raw and cooked mushrooms (Agaricus bisporus L.). Ann. Technol. Agric. 27: 287-293
  6. Charlton, A. J., W. H. H. Farrington, and P. Brereton. 2002. Application of $^1H$ NMR and multivariate statistics for screening complex mixtures: Quality control and authenticity of instant coffee. J. Agric. Food Chem. 50: 3098-3103
  7. Cho, I. H., Y.-S. Kim, and H.-K. Choi. 2007. Metabolomic discrimination of different grades of pine-mushroom (Tricholoma matsutake Sing.) using $^1H$ NMR and multivariate analysis. J. Pharm. Biomed. Anal. 43: 900-904
  8. Choi, H.-K., K.-H. Kim, K. H. Kim, Y.-S. Kim, M.-W. Lee, and W. K. Whang. 2006. Metabolomic differentiation of deer antlers of various origins by $^1H$ nuclear magnetic resonance spectrometry and principal components analysis. J. Pharm. Biomed. Anal. 41: 1047-1050
  9. Cloarec, O., M. E. Dumas, J. Trygg, A. Craig, R. H. Barton, J. C. Lindon, J. K. Nicholson, and E. Holmes. 2005. Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in $^1H$ NMR spectroscopic metabonomic studies. Anal. Chem. 77: 517-526
  10. Dijkstra, F. Y. 1976. Studies on mushroom flavours. 3. Some flavour compounds in fresh, canned and dried edible mushrooms. Z. Lebensm. Unters. Forsch. 160: 401-405
  11. Eriksson, L., E. Johansson, N. Kettaneh-Wold, and S. Wold. 2001. Multi- and Megavariate Data Analysis. Umetrics Academy, Umea, Swden
  12. Fragaki, G., A. Spyros, G. Siragakis, E. Salivaras, and P. Dais. 2005. Detection of extra virgin olive oil adulteration with lampante olive oil and refined olive oil using nuclear magnetic resonance spectroscopy and multivariate statistical analysis. J. Agric. Food Chem. 53: 2810-2816
  13. Jonsson, P., A. I. Johansson, J. Gullberg, J. Trygg, A. J. Okay as, B. Grung, S. Marklund, M. Sjöström, H. Antti, and T. Moritz. 2005. High-throughput data analysis for detecting and identifying differences between samples in GC/MSbased metabolomic analyses. Anal. Chem. 77: 5635-5642
  14. Jung, H. J. and H. J. Kwon. 2006. Chemical genomics with natural products. J. Microbiol. Biotechnol. 16: 651-660
  15. Karlshoj, K. and T. O. Larsen. 2005. Differentiation of species from the Penicillium requeforti group by volatile metabolite profiling. J. Agric. Food Chem. 53: 708-715
  16. Lee, K. W., H.-S. Joo, Y.-H. Yang, E. J. Song, and B.-G. Kim. 2006. Proteomics for streptomyces: 'Indusrial proteomics' for antibiotics. J. Microbiol. Biotechnol. 16: 331-348
  17. Maga, J. 1981. Influence of maturity, storage and heating on the flavor of mushroom (Agaricus bisporus) caps and stems. J. Food Process. Preserv. 5: 95-101
  18. Massart, D. L., B. G. M. Vandeginste, S. N. Deming, Y. Michotte, and L. Kauffman. 1988. Chemometrics: A Textbook. Elsevier, New York
  19. Mau, J.-L., C.-C. Chyau, J.-Y. Li, and Y.-H. Tseng. 1997. Flavor compounds in straw mushrooms Volvariella volvacea harvested at different stages of maturity. J. Agric. Food Chem. 45: 4726-4729
  20. Mau, J.-L., R. B. Beelman, and G. R. Ziegler. 1992. 1-Octen- 3-ol in the cultivated mushroom, Agaricus bisporus. J. Food Sci. 57: 704-706
  21. Mau, J.-L., R. B. Beelman, and G. R. Ziegler. 1993. Factors affecting 1-octen-3-ol in mushrooms at harvest and during postharvest storage. J. Food Sci. 58: 331-334
  22. Noel-Suberville, C., C. Cruz, J. Guinberteau, and M. Montury. 1996. Correlation between fatty acid content and aromatic compound release in fresh Blewit (Lepista nuda). J. Agric. Food Chem. 44: 1180-1183
  23. Oh, M.-K., M.-J. Cha, S.-G. Lee, L. Rohlin, and J. C. Liao. 2006. Dynamic gene expression profiling of Escherichia coli in carbon source transition from glucose to acetate. J. Microbiol. Biotechnol. 16: 543-549
  24. Pereira, G. E., J.-P. Gaudillere, C. van Leeuwen, G. Hilbert, M. Maucourt, C. Deborde, A. Moing, and D. Rolin. 2006. 1H NMR metabolite fingerprints of grape berry: Comparison of vintage and soil effects in Bordeaux grapevine growing area. Anal. Chim. Acta 563: 346-352
  25. Ramadan, Z., D. J. M. Grigorov, and S. Kochhar. 2006. Metabolic profiling using principal component analysis, discriminant partial least squares, and genetic algorithms. Talanta 68: 1683-1691
  26. Rapior, S., S. Gavalie, C. Andary, Y. Pelissier, C. Marion, and J.-M. Bessiere. 1996. Investigation of some volatile components of seven fresh wild mushrooms (Basidiomycetes). J. Essent. Oil Res. 8: 199-201
  27. Sumner, L. W., P. Mendes, and R. A. Dixon. 2003. Plant metabolomics: Large-scale phytochemistry in the functional genomics era. Phytochemistry 62: 817-836
  28. Thomas, A. F. 1973. An analysis of the flavor of the dried mushroom, Boletus edulis. J. Agric. Food Chem. 21: 955-958
  29. Ward, J., C. Harris, J. Lewis, and H. Beale. 2003. Assessment of $^1H$ NMR spectroscopy and multivariate analysis as a technique for metabolite fingerprinting of Arabidopis thaliana. Phytochemistry 62: 949-957
  30. Yu, J. W., W. H. Chung, T.-K. Sohn, Y.-H. Park, and H. I. Kim. 2006. Development of a meta-information system for microbial resources. J. Microbiol. Biotechnol. 16: 178-183