DOI QR코드

DOI QR Code

SLANT SUBMANIFOLDS OF QUATERNION KAEHLER MANIFOLDS

  • Sahin, Bayram (Department of Mathematics Inonu University)
  • Published : 2007.01.31

Abstract

This paper has two objectives. The first objective is to study slant submanifolds of quaternion Kaehler manifolds. We give characterization theorems and examples of slant submanifolds. For the second objective, we introduce the notion of semi-slant submanifolds which are different from the definition of N. Papaghiuc [15]. We obtain characterization theorems, examples of semi-slant sub manifolds and investigate the geometry of leaves of distributions which are involved in the definition of semi-slant submanifolds.

Keywords

slant submanifold;semi-slant submanifold;QR-submanifold;quaternion Kaehler manifold

References

  1. M. Barros, B. Y. Chen, and F. Urbano, Quaternion CR-Submanifolds of Quaternion Kaehler Manifolds, Kodai Math. 4 (1981), 399-418 https://doi.org/10.2996/kmj/1138036425
  2. A. Bejancu, Anti-quaternion submanifolds of quaternion manifolds, Lucrarile Conf. Nat. Geometrie Topologie, P. Neamt, (1983), 141-144
  3. A. Bejancu, Geometry of CR-Submanifolds, Kluwer Academic Publishers, Dortrecht, 1986
  4. J. L. Cabrerizo, A. Carriazo, L. M. Fernandez, and M. Fernandez, Semi-slant submanifolds of a Sasakian manifold, Geometriae Dedicata 78 (1999), 183-199 https://doi.org/10.1023/A:1005241320631
  5. J. L. Cabrerizo, A. Carriazo, L. M. Fernandez, and M. Fernandez, Structure on a slant submanifold of a contact manifold, Indian J. Pure Appl. Math. 31 (2000), no. 7, 857-864
  6. J. L. Cabrerizo, A. Carriazo, L. M. Fernandez, and M. Fernandez, Slant submanifolds in Sasakian manifolds, Glasg. Math. J. 42 (2000), no. 1, 125-138 https://doi.org/10.1017/S0017089500010156
  7. A. Carriazo, L. M. Fernandez, M. B. Hans-Uber, Some slant submanifolds of S- manifolds, Acta Math. Hungar. 107 (2005), no. 4, 267-285 https://doi.org/10.1007/s10474-005-0195-x
  8. A. Carriazo, L. M. Fernandez, M. B. Hans-Uber, Minimal Slant Submanifolds of the smallest dimension in S-manifolds, Revista Math. Iberoamericana 21 (2005), 47-66
  9. B. Y. Chen, Slant immersions, Bull. Austral. Math. Soc. 41 (1990), 135-147 https://doi.org/10.1017/S0004972700017925
  10. B. Y. Chen, Geometry of Slant Submanifolds, Katholieke Universiteit Leuven, Leuven, 1990
  11. S. Ishihara, Quaternion Kaehlerian manifolds, J. Differential Geometry 9 (1974), 483-500
  12. A. Lotta, Slant submanifolds in contact geometry, Bull. Math. Soc. Sci. Math. Roumanie 39 (1996), 183-198
  13. A. Lotta, Three-dimensional slant submanifolds of K-contact manifolds, Balkan J. Geom. Appl. 3 (1998), no. 1, 37-51
  14. N. Papaghiuc, Semi-slant submanifolds of a Kaehlerian manifold, An. Stiint. Al.I.Cuza. Univ. Iasi 40, (1994), 55-61
  15. K. Yano and M. Kon, Structures on Manifolds, Ser. Pure Math. World Scientific, 1984
  16. A. Bejancu, QR-submanifolds of Quaternion Kaehlerian Manifolds, Chinese J. Math 14, No. 2, (1986)

Cited by

  1. Ricci tensor of slant submanifolds in a quaternion projective space vol.349, pp.9-10, 2011, https://doi.org/10.1016/j.crma.2011.01.013
  2. On Chen invariants and inequalities in quaternionic geometry vol.2013, pp.1, 2013, https://doi.org/10.1186/1029-242X-2013-66
  3. Statistical Manifolds with almost Quaternionic Structures and Quaternionic Kähler-like Statistical Submersions vol.17, pp.9, 2015, https://doi.org/10.3390/e17096213
  4. Slant Submanifolds of Almost Contact Metric 3-Structure Manifolds vol.10, pp.2, 2013, https://doi.org/10.1007/s00009-012-0222-4
  5. Pointwise almost h-semi-slant submanifolds vol.26, pp.12, 2015, https://doi.org/10.1142/S0129167X15500998
  6. A new proof for some optimal inequalities involving generalized normalized δ-Casorati curvatures vol.2015, pp.1, 2015, https://doi.org/10.1186/s13660-015-0831-0
  7. Pointwise Slant Lightlike Submanifolds of Indefinite Kaehler Manifolds vol.15, pp.3, 2018, https://doi.org/10.1007/s00009-018-1156-2