Antioxidant Activity of Isolated Compounds from the Heartwoods of Rhus verniciflua

옻나무(Rhus verniciflua) 목질부에서 분리한 화합물의 항산화활성

  • Ahn, Eun-Mi (Department of Herbal Foodceutical, Daegu Haany University) ;
  • Park, Sang-Jae (AZI Co. Ltd.) ;
  • Choi, Won-Cheol (Cancer Center, East-West Neo Medical Center, KyungHee University) ;
  • Choi, Suk-Hoon (Cranbrook 12 grade Michigan) ;
  • Baek, Nam-In (Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University)
  • 안은미 (대구한의대학교 한방식품약리학과) ;
  • 박상재 ((주)에이지) ;
  • 최원철 (경희대학교 동서신의학병원 암센터) ;
  • 최석훈 (미시건 대학) ;
  • 백남인 (경희대학교 생명공학원 식물대사연구센터)
  • Published : 2007.12.31


The heartwoods of Rhus verniciflua was extracted with $H_2O$ and the concentrated extract was partitioned with $CHCl_3$, EtOAc, n-BuOH and $H_2O$, successively. From the EtOAc and n-BuOH fractions, four compounds were isolated through the repeated silica gel, ODS and Sephadex LH-20 column chromatographies. They were determined as sinapyl aldehyde (1), 2,4-dihydroxybenzaldehyde (2), 2,4-dihydroxybenzoic acid (3) and 2,4-dihydroxyphenylglyoxylic acid (4) on the basis of spectroscopic data, respectively. Among the isolated compounds, sinapyl aldehyde $(34.7{\pm}0.6%)$ and 2,4-dihydroxyphenylglyoxylic acid $(43.8{\pm}0.9%)$ showed the strong antioxidative activity than artificial antioxidant BHT $(14.4{\pm}0.3%)$ in DPPH radical scavenging activity.


  1. Shin, M. K. (1986) Coloured Limsangbonchohak. Nam-San Dang. Seoul, Korea, pp. 165-718
  2. Chae, Y. B., Kim, W. J., Ji, O. P., Ahn, M. J. and No, Y. J. (1988) Comprehensive Korea useful plants resources. Korean Research Institute of Chemical Technology. Seoul, Korea
  3. Kim, J. B. (2003) Identification of antioxidative component from stem bark of Rhus verniciflua. Korean J. Food & Nutr. 16, 60-65
  4. Lee, J. C., Lim, K. T., Jang, Y. S. (2002) Identification of Rhus verniciflua Stokes compounds that exhibit free radical scavenging and anti-apoptotic properties. Biochim. Biophys. Acta. 1570, 181-191
  5. Lim, K. T., Hu, C., Kitts, D.D. (2001) Antioxidant activity of a Rhus verniciflua Stokes ethanol extract. Food Chem. Toxicol. 39, 229-237
  6. Blois, M. S. (1958) Antioxidant determination by the use of a stable free radical. Nature. 181, 1199-1200
  7. Lim, E. K., Jackson, R. G., Bowles, D. J. (2005) Identification and characterization of Arabidopsis glycosyltransferases capable of glucosylating coniferyl aldehyde and sinapyl aldehyde. Febs Lett. 579, 2802-2806
  8. Aldrich Library of $^{13}C$ and $^1H$ FT NMR Spectra (1992), 2nd, pp. 117C (NMR)
  9. Aldrich Library of $^{13}C$ and $^1H$ FT NMR Spectra (1992), 2nd, pp. 1115B; 1117A; 1258A; 1259C (NMR)
  10. Eustaquio, A. S., Luft, T., Wang, Z. X., Gust, B., Chater, K. F., Li, S. M., Heide, L. (2003) Novobiocin biosynthesis: inactivation of the putative regulatory gene novE and heterologous expression of genes involved in aminocoumarin ring formation. Arch. Microbiol. 180, 25-32