Distribution and Extraction Condition of Endoprotease and Exopeptidase from Viscera of Illex argentinus

원양산 오징어(Illex argentinus) 내장의 endoprotease 및 exopeptidases의 분포 및 추출조건 검토

  • Kim, Hye-Suk (Division of Marine Life Science/Institute of Marine Industry, Gyeongsang National University) ;
  • Heu, Min-Soo (Division of Marine Life Science/Institute of Marine Industry, Gyeongsang National University) ;
  • Kim, Jin-Soo (Division of Marine Life Science/Institute of Marine Industry, Gyeongsang National University)
  • 김혜숙 (경상대학교 해양생명과학부/해양산업연구소) ;
  • 허민수 (경상대학교 해양생명과학부/해양산업연구소) ;
  • 김진수 (경상대학교 해양생명과학부/해양산업연구소)
  • Published : 2007.12.31


For the effective use of squid processing by-products as food resources, the distribution and the extraction condition of endoprotease and exopeptidase from viscera of Illex argentinus were investigated. Crude protein and lipid contents of viscera of Illex argentinus were 17.2% and 16.9%, respectively. Regardless of kinds of extraction solution (water, 1% NaCl, 1% KCl and 1% NaCl- KCl) and extraction times (1-20 h), endoprotease activities from viscera of Illex argentinus on Hb, casein and azocasein (pH 6.0) were higher than those on casein and azocasein of the other pHs, thus indicating that the distribution of protein hydrolysing protease is distinctive in the weak acid pH range. Exopeptidase activities against LeuPNA and ArgPNA at pH 7.5 were relatively higher than endoprotease activity of the same pH. The results suggested that exopeptidase among proteases from viscera of Illex argentinus was reasonable for application in food industry compared to endoprotease. The activity in enzymes from viscera of Illex argentinus was the highest in the exopeptidase extracted with deionized distilled water at room temperature for 6-8 h. The optimal reaction conditions of crude enzyme from viscera of Illex argentinus were 7.5 for pH and $50-55^{\circ}C$ for temperature.


  1. Nagai, T., Yamashita, E., Taniguchi, K., Kanamori, N. and Suzuki, N. (2001) Isolation and characterisation of collagen from the outer skin waste material of cuttlefish (Sepia lycidas). Food Chemistry. 72, 425-429 https://doi.org/10.1016/S0308-8146(00)00249-1
  2. Raksakulthai, R. and Haard, N. F. (2001) Purification and characterization of a carboxypeptidase from squid hepatopancrease (Illex illecebrosus). J. Agric. Food Chem. 49, 5019-5030 https://doi.org/10.1021/jf010320h
  3. Raksakulthai, R., Rosenberg, M. and Haard, N. F. (2002) Accelerated cheddar cheese ripening with an aminopeptidase fraction from squid hepatopancreas. J. Food Sci. 67, 923-929 https://doi.org/10.1111/j.1365-2621.2002.tb09429.x
  4. Kim, S. M. (1999) Accelerating effect of squid viscera on the fermentation of Alaska pollack scrap sauce. J. Food Sci. Nutr. 4, 103-106
  5. Kim, E. M., Cho, J. H., Oh, S. W. and Kim, Y. M. (1997) Characteristics of squid viscera oil. J. Korean Fish. Soc. 30, 595-600
  6. Suyama, M,, Konosu, S., Hamada, M. and Okuda, Y. (1983) Use of squid. Kouseiya-kouseikaku, pp. 52-100
  7. Seo, J. H., Jeong, Y. J., Lee, G. D. and Lee, M. H. (1999) Monitoring characteristics of protease isolated from squid viscera. J. the east asian of dietary life. 9, 195-199
  8. Shamsuzzaman, K. and Haard, N. F. (1984) Purification and characterization of chymotrypsin-like protease from the gastric mucosa of harp seal, Pagophilus groenlandicus. Can. J. Biochem. Cell Biol. 62, 699-708 https://doi.org/10.1139/o84-091
  9. Smith, L. S. (1989) Digestive functions in teleost fishes. In Fish Nutrition, J. E. Halver ed. Academic Press, Inc., New York, pp. 387-389
  10. Chen, C. S., Tsao, C. Y. and Jiang, S. T. (1989) Purification and characterization of proteases from the viscera of mikfish, Chanos chanos. J. Food Biochem. 12, 269-288 https://doi.org/10.1111/j.1745-4514.1988.tb00379.x
  11. Cho, S. Y., Joo, D. S., Park, S. H., Kang, H. J. and Jeon, J. K. (2000) Change of taurine content in squid meat during squid processing and taurine content in the squid processing waste water. J. Korean. Fish. Soc. 33, 51-54
  12. Bihan, G. L., Perrin, A. and Koueta, N. (2007) Effect of different treatments on the quality of cuttlefish (Sepia officinalis L.) viscera. Food Chemistry. 104, 345-352 https://doi.org/10.1016/j.foodchem.2006.11.056
  13. Kim, J. S., Kim, J. G. and Cho, S. Y. (1997) Screening for the raw material of gelatin from the skins of some pelagic fishes and squid. J. Korean Fish. Soc. 30, 55-61
  14. AOAC. (1990) Official methods of analysis (15th ed). Washington, DC: Association of Official Analytical Chemists
  15. Anson, M. I. (1938) The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J. Physiol. 22, 79-89
  16. Erlanger, B. F., Cooper, A. G. and Bendich, A. J. (1964) On the heterogeneity of three-times-crystallized a-chymotrypsin. Biochemistry. 3, 1880-1883 https://doi.org/10.1021/bi00900a015
  17. Charney, J. and Tomarelli, R. M. (1947) A colorimetric method for determination of the proteolytic activity of duodenal juice. J. Bio. Chem. 171, 501-505
  18. Heu, M. S., Kim, H. R., Cho, D. M., Godber, J. S. and Pyeun, J. H. (1997) Purification and characterization of cathepsin Llike enzyme from the muscle of anchovy, Engraulis japonica. Comp. Biochem, Physiol. 118B, 523-529
  19. Barrett A. J. and Kirschke, H. (1981) Cathepsin B, Cathepsin H, and Cathepsin L. In Methods in Enzymology, Vol. 80. L. Lorand ed Acedemic Press, Inc., New York, pp. 535-561
  20. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265-275
  21. Okutani, T. (2005) Cuttlefishes and Squid of the World. Seizando. Tokyo. pp. 198
  22. Raksakulthai, N., Lee Y. Z. and Harrd, N. F. (1986) Effect of enzyme supplements on the production of fish sauce from male capelin (Mallotus villosus). Can. Inst. Food Sci. Technol. J. 19, 28-33 https://doi.org/10.1016/S0315-5463(86)71377-1
  23. Dawson, R. M. C., Elliot, D. C., Elliot, W. H. and Jones, K. M. (1986) Data for biochemical research, 3rd ed., Oxford Univ. Press, Oxford, pp. 417-441
  24. Kolodziejska, I., Pacana, J., Sikorski, Z. E. (1992) Effect of squid liver extract on proteins and on the texture of cooked squid mantle. J. Food Biochem. 16, 141-150 https://doi.org/10.1111/j.1745-4514.1992.tb00442.x
  25. Heu M. S., Kim, H. R. and Pyeun, J. H. (1995) Comparison of trypsin and chymotrypsin from the viscera of anchovy, Engraulis japonica. Comp. Biochem. Physiol. 112B, 557-567
  26. Kishimura, H., Saeki, H. and Hayashi, K. (2001) Isolation and characteristics of trypsin inhibitor from the hepatopancreas of a squid (Todarodes pacificus). Comparative Biochemistry and Physiology Part B. 130, 117-123 https://doi.org/10.1016/S1096-4959(01)00415-8
  27. Garcia-Carreno, F. L. and Haard, N. F. (1993) Characterization of proteinase classes in langostilla (Pleuroncodes planipes) and crayfish (Pacifastacus astacus) extracts. J. Food Biochem. 17, 97-113 https://doi.org/10.1111/j.1745-4514.1993.tb00864.x
  28. Heu, M. S. and Ahn, S. H. (1999) Development and fractionation of proteolytic enzymes from an inedible seafood product. J. Korean Fish. Soc. 32, 458-465
  29. Yoshinaka, R., Sato, M. and Ikeda, S. (1981) Distribution of trypsin and chymotrypsi, and their zymogens in digestive system of catfish. Bull. Jap. Soc. Sci. Fish. 47, 1615-1618 https://doi.org/10.2331/suisan.47.1615
  30. Starky, P. M. (1977) Elastase and cathepsin G: the serine proteinases of human neutrophil leucocytes and spleen. In: Proteinases in Mammalian Cells and Tissues, Barrett, A. J. ed. North-Holland Publishing Co., Amsterdam, 57-89
  31. Ministry of Maritime Affairs and Fisheries (2007) http://badasori.momaaf.go.kr/matrix/momaf/trans/tratns.jsp
  32. Sukarno. K., Takahashi, M. Hatano and Sakurai, Y. (1996) Lipase from neon flying squid hepatopancreas: purification and properties. Food Chem. 57, 515-521 https://doi.org/10.1016/S0308-8146(96)00044-1
  33. Okzumi, M. and Huzii, T. (2000) Nutrition.Function Components of Squid. Seizando. Tokyo. pp. 135-139