Microbial Population Diversity of the Mud Flat in Suncheon Bay Based on 16S rDNA Sequences and Extracellular Enzyme Activities

남해안 갯벌 미생물의 세포외효소 활성 및 16S rDNA 분석에 의한 다양성 조사

  • Kim, Yu-Jeong (Department of Agricultural Chemistry, Sunchon National University) ;
  • Kim, Sung-Kyum (Department of Agricultural Chemistry, Sunchon National University) ;
  • Kwon, Eun-Ju (Department of Agricultural Chemistry, Sunchon National University) ;
  • Baik, Keun-Sik (Department of Biology, Sunchon National University) ;
  • Kim, Jung-Ho (Department of Agricultural Chemistry, Sunchon National University) ;
  • Kim, Hoon (Department of Agricultural Chemistry, Sunchon National University)
  • 김유정 (순천대학교 농업생명과학대학 생물환경) ;
  • 김성겸 (순천대학교 농업생명과학대학 생물환경) ;
  • 권은주 (순천대학교 농업생명과학대학 생물환경) ;
  • 백근식 (순천대학교 자연과학대학 생명과학) ;
  • 김정호 (순천대학교 농업생명과학대학 생물환경) ;
  • 김훈 (순천대학교 농업생명과학대학 생물환경)
  • Published : 2007.12.31

Abstract

Diversity of the mud flat microbial population in Suncheon Bay was investigated by studying extracellular enzyme activities and 16S rDNA sequences. Four culturable bacterial strains with CMCase, xylanase and protease activities were isolated from the wetland and the mud flat. All the strains produced more xylanase activity than CMCase or protease activity, and the properties of the isolate enzymes from the wetland were similar to those from the mud flat. About 2,000 clones were obtained with the 16S rDNA amplified from the metagenomic DNA isolated from the mud samples. Based on the restriction pattern(s), seventeen clones were selected for base sequence analysis. Of the 17 clones, only 35% (6 clones) were found to be cultured strains and 65% (11 clones) to be uncultured strains. The similarities in the base sequences of the clones ranged from 91.0% to 99.9% with an average similarity of 97.3%. The clones could be divided into 7 groups, Proteobacteria (9 clones, 52.9%), Firmicutes (3 clones, 17.6%), Bacteroidetes (1 clone), Flavobacteria (1 clone), Verrucomicrobia (1 clone), Acidobacteria (1 clone), and Chloroflexi (1 clone). Most of the Proteobacteria clones were gamma Proteobacteria associated with oxidation-reduction of sulfur.

References

  1. Hoppe, H. G. (1983) Significance of exoenzymatic activites in the ecology of brackish water: measurements by means of methylumbelliferyl substrates. Mar. Ecol.-Prog. Ser. 11, 299-308 https://doi.org/10.3354/meps011299
  2. Jakob, P., Glockner, F. O., Unterholzner, S., Alfreider, A., Psenner, R. and Amann, R. (1998) Seasonal community and population dynamics of pelagic bacteria and archaea in a high mountain lake. Appl. Environ. Microbiol. 64, 4299-4306
  3. Amann, R., Ludwig, W. and Schleifer, K. H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143-169
  4. Ward, D. M., Weller, R. and Bateson, M. M. (1990) 16S rRNA sequences reveal uncultured inhabitants of a well studied thermal community. FEMS Microbiol. Rev. 6, 102-115
  5. Woese, C. R., (1987) Bacterial evolution. Microbiol. Rev. 51, 221-271
  6. Torsvik, V., Sorheim, R. and Goksoyr, J. (1996) Total bacterial diversity in soil and sediment communities - a review. J. Ind. Microbiol. 17, 170-178 https://doi.org/10.1007/BF01574690
  7. Vetriani, C., Reysenbach, A. L. and Dore, J. (1998) Recovery and phylogenetic analysis of archaeal rRNA sequences from continental shelf sediments. FEMS Microbiol. Lett. 161, 83-88 https://doi.org/10.1111/j.1574-6968.1998.tb12932.x
  8. Wilms, R., Sass, H., Kopke, B., Koster, J., Cypionka, H. and Engelen, B. (2006) Specific bacterial, archaeal, and eukaryotic communities in tidal-flat sediments along a vertical profile of several meters. Appl. Environ. Microbiol. 72, 2756-2764 https://doi.org/10.1128/AEM.72.4.2756-2764.2006
  9. Webster, G., Yarram, L., Freese, E., Koster, J., Sass, H., Parkes, R. J. and Weightman, A. J. (2007) Distribution of candidate division JS1 and other bacteria in tidal sediments of the German Wadden Sea using targeted 16S rRNA gene PCRDGGE. FEMS Microbiol. Ecol. 62, 78-89 https://doi.org/10.1111/j.1574-6941.2007.00372.x
  10. Stevens, H., Brinkhoff, T., Rink, B., Vollmers, J. and Simon, M. (2007) Diversity and abundance of Gram positive bacteria in a tidal flat ecosystem. Environ. Microbiol. 9, 1810-1822 https://doi.org/10.1111/j.1462-2920.2007.01302.x
  11. Baik, K. S., Choi, J. H. and Seong, C. N. (2000) Cellulose Degradation and Extracellular enzymatic activity of the mud flat in Sunchon Bay. Kor. J. Microbiol. 36, 130-135
  12. Lee, M. S., Hong, S. G., Lee, D. H., Kim, C. K. and Bae, K. S. (2001) Bacterial diversity in the mud flat of Sunchon Bay, Chunnam province, by 16S rRNA gene analysis. Kor. J. Microbiol. 37, 137-144
  13. Kim, B. S., Oh, H. M., Kang, H. J., Park, S. S. and Chun, J. S. (2004) Remarkable bacterial diversity in the tidal flat sediment as revealed by 16S rDNA analysis. J. Microbiol. Biotechnol. 14, 205-211
  14. Cho, H. Y., Lee, J. H. and Hyun, J. H. (2004) Bacterial community structure and diversity using 16S rDNA analysis in the intertidal sediment of Ganghwa island. Kor. J. Microbiol. 40, 189-198
  15. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for the determination of reducing sugar. Anal. Chem. 31, 436-428
  16. Lee, K. D., Kim, J. and Kim, H. (1999) Purification and characterization of carboxymethyl-cellulase produced by Bacillus sp. KD1014. Agric. Chem. Biotechnol. 42, 107-112
  17. Shin, E. S., Yang, M. J., Jung, K. H., Kwon, E. J., Jung, J. S., Park, S. K., Kim, J., Yun, H. D. and Kim, H. (2002) Influence of the transposition of the thermostabilizing domain of Clostridium thermocellum xylanase (XynX) on xylan binding and thermostabilization. Appl. Environ. Microbiol. 68, 3496-3501 https://doi.org/10.1128/AEM.68.7.3496-3501.2002
  18. Kim, H., Yang, M. J., Jung, K. H. and Kim, J. (2000) Cloning and characterization of the major extracellular neutral protease (NprM) from Bacillus megaterium ATCC 14945. Agric. Chem. Biotechnol. 43, 147-151
  19. Torsvik, V., Glksoyr, J. and Daae, F. L. (1990) High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56, 782-787
  20. Zhou, J., Bruns, M. A. and Tiedje, J. M. (1996) DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62, 316-322
  21. Maidak, B. L., Cole, J. R., Libum, T. G., Parker, CT Jr., Saxman, P. R., Stredwick, J. M., Garrity, G. M., Li, B., Olsen, G. J., Pramanik, S., Schmidt, T. M. and Tiedje, J. M. (2000) The RDP (Ribosomal Database project) continues. Nucleic Acids Res. 28, 173-174 https://doi.org/10.1093/nar/28.1.173
  22. Jukes, T. H. and Cantor, C. R. (1969) Evolution of protein molecules. In Mammalian protein metabolism, (Munro, H. N. ed.) pp. 21-132. New York, Academic Press, USA
  23. Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evaluation. 39, 783-791
  24. Boetius, A. and Lochte, K. (1996) Effect of organic enrichments on hydrolytic potentials and growth of bacteria in deep-sea sediments. Mar. Ecol.-Prog. Ser. 140, 239-250 https://doi.org/10.3354/meps140239
  25. Tebbe, C. C. and Vahjen, W. (1993) Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA form bacteria and a yeast. Appl. Environ. Microbiol. 59, 2657-2665
  26. Wilson, I. G. (1997) Inhibition and facilitation of nucleic acid amplification. Appl. Environ. Microbiol. 62, 1623-1629
  27. Gonzalez, J. M., Mayer, F., Moran, M. A., Hodson, R. E. and Whitman, W. B. (1997) Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int. J. Syst. Bacteriol. 47, 369-376 https://doi.org/10.1099/00207713-47-2-369
  28. Kasai, H., Katsuta, A., Sekiguchi, H., Matsuda, S., Adachi, K., Shindo, K., Yoon, J., Yokota, A. and Shizuri, Y. (2007) Rubritalea squalenifaciens sp. nov., a squalene-producing marine bacterium belonging to subdivision 1 of the phylum 'Verrucomicrobia'. Int. J. Syst. Evol. Microbiol. 57, 1630-1634 https://doi.org/10.1099/ijs.0.65010-0
  29. Green, D. H., Llewellyn, L. E., Negri, A. P., Blackburn, S. I. and Bolch, C. J. (2004) Phylogenetic and functional diversity of the cultivable bacterial community associated with the paralytic shellfish poisoning dinoflagellate Gymnodinium catenatum. FEMS Microbiol. Ecol. 47, 345-357 https://doi.org/10.1016/S0168-6496(03)00298-8
  30. Sorokin, D. Y., Lysenko, A. M., Mityushina, L. L., Tourova, T. P., Jones, B. E., Rainey, F. A., Robertson, L. A. and Kuenen, G. J. (2001) Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp. nov. and Thioalkalivibrio denitrificans sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfuroxidizing bacteria from soda lakes. Int. J. Syst. Evol. Microbiol. 51, 565-580 https://doi.org/10.1099/00207713-51-2-565
  31. Sorokin, D. Y., Tourova, T. P., Lysenko, A. M. and Muyzer, G. (2006) Diversity of culturable halophilic sulfur-oxidizing bacteria in hypersaline habitats. Microbiology. 152, 3013-3023 https://doi.org/10.1099/mic.0.29106-0
  32. Reichenbach, H., Lang, E., Schumann, P. and Sproer, C. (2006) Byssovorax cruenta gen. nov., sp. nov., nom. rev., a cellulosedegrading myxobacterium: rediscovery of 'Myxococcus cruentus' Thaxter 1897. Int. J. Syst. Evol. Microbiol. 56, 2357-2363 https://doi.org/10.1099/ijs.0.63628-0
  33. Dimitriu, P. A., Shukla, S. K., Conradt, J., Marquez, M. C., Ventosa, A., Maglia, A., Peyton, B. M., Pinkart, H. C. and Mormile, M. (2005) Nitrincola lacisaponensis gen. nov., sp., nov., a novel alkaliphilic bacterium isolated from an alkaline, saline lake. Int. J. Syst. Evol. Microbiol. 55, 2273-2278 https://doi.org/10.1099/ijs.0.63647-0
  34. Choi, D. H. and Cho, B. C. (2006) Lutibacter litoralis gen. nov., sp. nov., a marine bacterium of the Flavobacteriaceae isolated from tidal flat sediment. Int. J. Syst. Evol. Microbiol. 56, 771-776 https://doi.org/10.1099/ijs.0.64146-0
  35. Gray, J. P. and Herwig, R. P. (1996) Phylogenetic analysis of the bacterial communities in marine sediments. Appl. Environ. Microbiol. 62, 4049-4059
  36. Urakawa, H. K., Kita-Tsukamoto, K. and Ohwada, K. (1999) Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay, Japan, as determined by 16S rRNA gene analysis. Microbiology. 145, 3305-3315 https://doi.org/10.1099/00221287-145-11-3305
  37. Lindstrom, E., Barry, R. P. and Braddock, J. F. (1999) Longterm effects on microbial communities after a subarctic oil spill. Soil Biol. Biochem. 31, 1677-1689 https://doi.org/10.1016/S0038-0717(99)00081-4