DOI QR코드

DOI QR Code

Measurement of Lactoferrin, IgA, IgG1, IgG2, Antibacterial Activity, and Lactic Acid Bacterial Growth in Holstein Colostrum

Holstein 초유 중 Lactoferrin, IgA, IgG1, IgG2 정량과 미생물의 성장에 미치는 영향

  • 랜친핸드 (충남대학교 농업생명과학대학 동물자원과학부) ;
  • 배형철 (충남대학교 농업생명과학대학 동물자원과학부) ;
  • 남명수 (충남대학교 농업생명과학대학 동물자원과학부)
  • Published : 2007.12.30

Abstract

This experiment was carried out to measure the content of lactoferrin, IgA, $IgG_1,\;IgG_2$, in Holstein colostrum, and to test the effect of it's colostrum on the antibacterial activity to pathogenic bacteria and the growth stimulation of lactic acid bacteria. Colostrum was collected at the first, second, and third day after parturition in summer and winter season. The levels of lactoferrin, IgA, $IgG_1,\;and\;IgG_2$ in Holstein cow colostrum were 0.30 mg/mL, 0.37 mg/mL, 4.00 mg/mL, 0.37 mg/mL, respectively, on the first day of the summer season whereas they were 1.16 mg/mL, 2.60 mg/mL, 13.35 mg/mL, 1.30 mg/mL on the first day of the winter season, postpartum. Heat treated ($65^{\circ}C$ for 30 min) or non-treated colostrum showed antibacterial activity toward Escherichia coli. The growth of commercial mixed strains (Bifidobacterium longum, Lactobacillus acidophilus, Streptococcus themophilus), L. acidophilus, L. casei, L. bulgaricus, and L. lactis subsp. cremoris were improved in first, second and third day colostrum compared to normal milk. Commercial miked strains (B. longum, L. acidophilus S. themophilus) lowered the pH to 4.97-5.22 and 4.89 while increasing the titratable acidity to 0.75-0.88% and 0.70% in colostrum and normal milk, respectively. However, L. casei, L. bulgaricus, L. lactis subsp. cremoris lowered the pH to 5.96-6.47 and 6.5-6.8 while increasing the titratable acidity to 0.29-0.48% and 0.20-0.25% in colostrum and normal milk, respectively.

Keywords

lactoferrin;IgA;$IgG_1$;$IgG_2$;bovine colostrum;antibacterial activity

References

  1. Butler, T. E. (1994) Passive immunity and immunoglobulin diversity. In: Indigenous antimicrobial agents of milk - Recent Developments. Int. Dairy Fed. Special Issue 9404, 14-50
  2. Donovan, S. M. and Odle, J. (1994) Growth factors in milk as mediators of infant development. Annu. Rev. Nutr. 14, 147-167 https://doi.org/10.1146/annurev.nu.14.070194.001051
  3. Foley, J. A. and Otterby. D. E. (1978) Availability, storage, treatment, composition, and feeding value of surplus colostrum. A review. J. Dairy Sci. 61, 1033-1060 https://doi.org/10.3168/jds.S0022-0302(78)83686-8
  4. Rainard. P. (1986) Bacteriostatic activity of bovine milk lactoferrin against mastic bacteria. Vet. Microbiol. 11, 387-392 https://doi.org/10.1016/0378-1135(86)90068-4
  5. Reiter. B., Marshall. V. M., Bjorck. L., and Rosen. C. G. (1976) Nonspecific bactericidal activity of the lactopcroxidase-thiocyanate-hydrogen peroxide system of milk against Escherichia coli and some Gram-negative pathogens. Infect. Immun. 13, 800-807
  6. Siragusa, G. R. and Johnson, M. G. (1989) Inhibition of Listeria monocytogenes growth by the lactoperoxidase thiocyanate-$H_2O_2$ antimicrobial system. Appl. Microbiol. Biotechnol. 55, 2802-2805
  7. Tacket, C. O., Binion, S. B., Bostwick, E., Losonsky, G., Roy, M. J., and Edelman, R. (1992) Efficacy of bovine immunoglobulin concentrate in preventing illness after Shigella flexneri challenge. Am. J. Trop. Med. Hyg. 47, 276-283 https://doi.org/10.4269/ajtmh.1992.47.276
  8. Erdei, J.. Forsgren, A., and Naidu, A. S. (1994) Lactoferrin binds to porins OmpF and OmpC in Escherichia Coli. Infect. Immun. 62, 1236-1240
  9. Reiter. B. (1978) Review of the progress of dairy science: Antimicrobial systems in milk. J. Dairy Res. 45, 131-147 https://doi.org/10.1017/S0022029900016290
  10. Aparna, H. S. and Salimath, P. V. (1999) Acidic glycoproteins of buffalo colostrum and their influence on the growth of Bifidobacterium bifidus. Nutr. Res. 19, 295-303 https://doi.org/10.1016/S0271-5317(98)00192-4
  11. Besser, T. E. and Gay, C. C. (1994) The importance of colostrum to the health of the neonatal calf. Vet. Clin. N. Am-Food Anim. Practice 10, 107-117 https://doi.org/10.1016/S0749-0720(15)30591-0
  12. Masson, P. L. and Heremans, J. F. (1971) Lactoferrin in milk from different species. Comp. Biochem. Physiol. 39, 119-29 https://doi.org/10.1016/0300-9629(71)90351-3
  13. Batish. V. K., Chander. H., Zumdegeni. K. C., Bhatia. K. L., and Singh, R. S. (1988) Antibacterial activity of lactoferrin against some common food-borne pathogenic organisms. Aust. J. Dairy Technol. 5, 16-18
  14. Hoshower L. (1994) Brief communication: immunologic aspects of human colostrum and milka misinterpretation. Am. J. Phys. Anthropol. 94, 421-5 https://doi.org/10.1002/ajpa.1330940310
  15. Karnau, D. N., Doores, S., and Pruitt. K. M. (1990) Enhanced thermal destruction of Listeria monocytogenes and Staphylococcus aureus by the lactoperoxidase system. Appl. Environ. Microbiol. 56, 2711-2716
  16. Lassiter, M. O., Newsome, A. L., Sams, L. D., and Arnold, R. R. (1987) Characterization of lactoferrin interaction with Streptococcus mutans. J. Dent. Res. 66, 480-485 https://doi.org/10.1177/00220345870660021601
  17. Korhonen, H., Syvaoja, E. L., Ahola-Luttila, H., Sivela, S., Kopola, S., and Husu, J. (1995) Bactericidal effect of bovine normal and immune serum, colostrum and milk against Helicohacter pvlori. J. Appl. Bacteriol. 78, 655-662 https://doi.org/10.1111/j.1365-2672.1995.tb03112.x
  18. Naidu, A. S. and Arnold, R. R. (1994) Lactoferrin interaction with Salmonellae potentiates antibiotic susceptibility in vitro. Diagn. Microbiol. Infec. Dis. 20, 69-75 https://doi.org/10.1016/0732-8893(94)90094-9
  19. Oram, J. D. and Reiter. B. (1968) Inhibition of bacteria by lactoferrin and other iron-chelating agents. Biochim. Biophys. Acta 170, 351-365 https://doi.org/10.1016/0304-4165(68)90015-9
  20. Payne. K. D., Davidson. P. M., and Olivier. S. P. (1990) Influence of bovine lactoferrin on the growth of Listeria monocytogenes. J. Food Protect. 53, 468-472 https://doi.org/10.4315/0362-028X-53.6.468
  21. Mach, J. P. and Pahid, J. J. (1971) Secretory IgA: a major immunoglobulin in most bovine external secretion. J. lmmun. 106, 552-563
  22. Saito. H., Miyakawa. H., Tamura, Y., Shimamura. S., and Tomita. M. (1991) Potent bactericidal activity of bovine lactoferrin hydrolysate produced by heat treatment at acidic pH. J. Dairy Sci. 74, 3724-3730 https://doi.org/10.3168/jds.S0022-0302(91)78563-9
  23. Richardson, G. H. (1985) Standard methods for the examination of dairy products 15th ed, American Public Health Association Inc. Washington, DC, pp. 133
  24. Tsuji, S., Hirata, Y., Mukai, F., and Ohtagaki, S. (1990) Comparison of lactoferrin content in colostrum between different cattle breeds. J. Dairy Sci. 73, 125-128 https://doi.org/10.3168/jds.S0022-0302(90)78654-7
  25. Larson, L. L., Owen, F. G., Albright, J. L., Appleman, R. D., Lamb, R. C., and Muller, L. D. (1977) Guidelines toward more uniformity in measuring and reporting calf experimental data. J. Dairy Sci. 60, 989-1003 https://doi.org/10.3168/jds.S0022-0302(77)83975-1
  26. Shams, D. (1994) Growth factors in milk. Endocr. Reg. 28, 38
  27. Korhonen, H. (1977) Antimicrobial factors in bovine colostrum. J. Agr. Sci. Finland 49, 434-447
  28. Gaya, P., Medina, M., and Nunez, M. (1991) Effect of the lactoperoxidase system on Listeria monocytogenes behavior in raw milk at refrigeration temperatures. Appl. Environ. Microbiol. 57, 3355-3360