Identification and Characterization of Lactic Acid Bacteria Starters Isolated from the Commercial Drink-Yogurt Products

국내 액상 발효유용 유산균 스타터 미생물의 동정 및 생리적 특성

  • Jeon, Sang-Rok (Detp. Biological Resources and Technology, Yonsei University) ;
  • Song, Tae-Suk (Detp. Biological Resources and Technology, Yonsei University) ;
  • Kim, Ji-Yoon (Korean Basic Science Institute) ;
  • Shin, Won-Cheol (Department of Biological Engineering and Technology, Kangwon National University) ;
  • Her, Song-Wook (Korean Basic Science Institute) ;
  • Yoon, Sung-Sik (Detp. Biological Resources and Technology, Yonsei University)
  • 전상록 (연세대학교 생물자원공학과) ;
  • 송태석 (연세대학교 생물자원공학과) ;
  • 김지연 (한국기초과학지원연구원 춘천센터) ;
  • 신원철 (강원대학교 생물공학과) ;
  • 허송욱 (한국기초과학지원연구원 춘천센터) ;
  • 윤성식 (연세대학교 생물자원공학과)
  • Published : 2007.12.30


Starters of lactic acid bacteria(LAB) were isolated from the commercial yoghurt products and the four isolates have been studied on their identification and some physiological characteristics. For the purpose of identification, microscopic examination, API test, and 16s rRNA gene sequencing were conducted. Isolate A from a yogurt product of local dairy company A was shown to be Gram-positive rod-shaped bacterium. All strains isolated were turned out to be as Lactobacillus paracasei by using a API 50 CHL kit. In contrast, isolate A was identified as a strain of Lactobacillus helveticus based on the 16S rRNA sequencing data, and L. casei ssp. casei for both B and D and L. paracasei for C. All the isolates survived the simulated gastric juice, pH 2.0 within 3 hours and sharply decreased in viability so that no viable cell was observed after 4.5 hours incubation. In addition, the four isolated strains were almost identical in antibiotic susceptibility to six different kinds of antibiotics including erythromycin ($15\;{\mu}g$), ampicillin ($10\;{\mu}g$), gentamycin ($10\;{\mu}g$), neomycin ($30\;{\mu}g$), but rather resistant to colistin ($10\;{\mu}g$) and streptomycin ($10\;{\mu}g$). It was noteworthy that four isolates were confirmed to produce antibacterial substance against foodborne pathogens of Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli 0157:H7 as test organisms based on the inhibitory zones on an MRS soft agar medium. At presence, the inhibitory factor is unknown so that further studies are required to ascertain the active factor responsible for the inhibitory activities.


Lactic acid bacteria;starters;drink-yogurt;identification;characterization


  1. Charteris, W. P., Kelly, P. M., Morelli, L., and Collins, J. K. (1998) Antibiotic susceptibility of potentially probiotic Bifidobacterium isolates from the human gastrointestinal tract. Lett. Appl. Microbiol. 26, 333-337
  2. Corcoran, B. M., Stanton, C., Fitzgerald, G. E, and Ross, R. P. (2005) Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl. Environ. Microbiol. 71, 3060-3067
  3. Sanger, F., Nicklen, S., and Coulson, R. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Nat!. Acad. Sci. USA 74, 5463-5467
  4. Gilliland, S. E., Staley, T. E., and Bush, L. J. (1984) Importance in bile tolerance of Lactobacillus acidophilus used as a diatery adjunct. J Dairy Sci. 67, 3045-3051
  5. Huang, Y. and Adams, M. C. (2004) In vitro assessment of the upper gastrointestinal tolerance of potential probiotic dairy propionibacteria. Int. J. Food Microbiol. 91, 253-260
  6. Makarova, K., Slesarev, A., Wolf, Y., Sorokin, A., Mirkin, B., Koonin, E., Pavolv, A., Pavlova, N., Karamychev, V., Polouchine, N., Shakhova, V., Grigoriev, I., Lou, Y., Rohksar, D., Lucas, S., Huang, K., Goldstein, D. M., Hawkins, T., Plengvidhya, V., Welker, D., Hughes, J., Goh, Y., Benson, A., Baldwin, K., Lee, J. H., Diaz-Muniz, I., Dosti, B., Smeianov, V., Wechter, W., Barabote, R., Lorca, G., Altermann, E., Barrangou, R., Ganesan, B., Xie, Y., Rawsthome, H., Tamir, D., Parker, C., Breidt, E., Broadbent, J., Hutkins, R., O'SuIlIivan, D., Steele, J., Unlu, G., Saier, M., Klaenhammer, T., Richardson, P., Kozyavkin, S., Weimer, B., and Mills, D. (2006) Comparative genomics of the lactic acid bacteria. Proc. Natl. Acad. Sci. USA. 103, 15611-15616
  7. Naser, S. M., Hagen, K. E., Vancanneyt, M., Cleewerck, I., Swings, J., Tompkins, T. A., Cachat and Priest B. (2006) Lactobacillus suntoryeus is a later synonym of Lactobacillus helveticus (Orla-Jensen 1919). Int. J. Syst. Evol. Microbiol. 56, 355-360
  8. Vizoso, P., Pinto, M. G., Franz, C. M., Schillinger, U., and Holzapfel, W. H. (2006) Lactobacillus spp. with in vitro probiotic properties from human faeces and traditional fermented products. Int. J. Food Microbiol., 109, 205-214
  9. Kwon, T. Y. and Lee, J. H. (2004) Characterization of the scr gene cluster involved in sucrose utilization in Bifidobacterium longum. Kor. J. Microbial. Biotechnol., 32, 199-205
  10. Rastall, R. A. and Martin, V. (2002) Probiotics and symbiotics: towards the next generation. Current Opinion Curr. Biotechnol. 13, 490-496
  11. 홈페이지 자료 Christian Hansen(
  12. Bergey's manual of systematic bacteriology. Boone, David, R., Castenholz, and Richard, W. (eds.) Williams and Wilkins, 2nd ed., 2001
  13. Annabel, H., Parret, A., Schoofs, G., Proost, P., and De Mot, R. (2003) J. Bacteriol., 185, 897-908
  14. Heller, K. J. (2001) Probiotic bacteria in the fermented foods: product characteristics and starter organisms. Am. J.Clin. Nutr. 73(suppl), 374-379
  15. 홈페이지 자료 Danisco AS(
  16. Altschul, S. F., Gish, W., Miller, W., Myers, E. W.. and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. BioI. 215, 403-410
  17. Wilmotte, A., Van der Auwera, G., and de Wachter, R. (1993) Structure of the 16S ribosomal RNA of the thermophilic Cyanobacterium chlorogloeopsis HTF (Mastigocladus laminos us HTF') strain PCC7518, and phylogenetic analysis. FEBS Lett. 317, 96-100
  18. Vlez, M. P., Hermans, K., Verhoeven, T. L., Lebeer, S. E., Vanderleyden, J., and De Keersmaecker, S. C. (2007) Identification and characterization of starter lactic acid bacteria and probiotics from Columbian dairy products. J. Appl. Microbiol. 103, 666-674
  19. Dare, R., Magee, J. T., and Mathison, G. E. (1972) In-vitro studies on the bacteriocidal properties of natural and synthetic gastric juices. J. Med. Microbial. 5, 395-406
  20. Havenaar R. and Huis in't Veld J.(1992) Probiotics: A general view. In: The Lactic Acid Bacteria in Healthand Disease. pp. 151-170
  21. Fuller, R. (1992) Probiotics: The scientific basis. Champman & Hall, London
  22. Dicks, L. M. T., DU Plessis, E. M., Dellaglio, F., and Lauer, E. (1996) Reclassification of Lactobacillus casei subsp. casei ATCC 393 and Lactobacillus rhamnosus ATCC 15820 as Lactobacillus zeae nom. rev., designation of ATCC 334 as the neotype of L. casei subsp. casei, and rejection of the name Lactobacilllus paracasei. Int. J. Sys. Bacteriol. 46, 337-340
  23. Charteris, W. P., Kelly, P. M., Morelli, L., and Collins, J. K. (1998) Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. J. Appl. Microbiol. 84, 759-768
  24. Elder, R. (2003) Drinkable yogurt beats the bagel. Drug Store News. 25, 42-50
  25. Hayes, M., Ross, R. P., Fitzgerald, G. F., and Stanton, C. (2007) Review: putting microbes to work: dairy fermentation, cell factories and bioactive peptides. Part I: Overview. Biotechnol. J. 2, 426-34
  26. 한국유가공협회 (Korea Dairy Industries Association) 홈페이지 자료. httpv/, 2007
  27. Huis in 't Veld. J., Drost. J. S., and Havenaar. R. (1982) Establishment and localization of mixtures of Streptococcus mutans serotypes in the oral cavity of the rat. J. Dent. Res. 61, 1199-1205
  28. Mori, K., Yamazaki, K., Ishiyama, T., Katsumata, M., Kobayashi, K., Kawai, Y., Inoue, N., and Shinano, H. (1997) Comparative sequence analysis of the genes coding for 16s rRNA of Lactobacillus case i-related texa. Int. J. Syst. Bacteriol., 47, 54-57
  29. Sanders, M. E. and Huis in't Veld, J. (1999) Review: Bringing a probiotic-containing functional food to the market.microbiological, product, regulatory and labeling issues. Antonie Van Leeuwenhoek. 76(1-4), 293-315
  30. Conway, P. L., Gorbach, S. L., and Goldin, B. R. (1987) Survival oflactic acid bacteria in the human stomach and adhesion to intestinal cells. J. Dairy Sci. 70, 112-116
  31. Saito, T. (2004) Selection of useful probiotic lactic acid bacteria from the Lactobacillus acidophilus group and their applications to functional foods. Animal Science. J. 75, 1-13
  32. Suh, H. J., Kim, Y. S., Kim, J. M., and Lee, H. (2006) Effect of mulberry extract on the growth of yogurt starter cultures. Kor. J. Food Sci. Ani. Resour., 26, 144-147
  33. Ennahar, S., Cai, Y., and Fugita, Y. (2003) Phylogenetic diversity of lactic acid bacteria associated with paddy rice silage as determined by 16S ribosomal DNA analysis. Appl. Environ. Microbiol. 69, 441-451
  34. Zhou, X., Pan, Y., Wang, Y., and Li, W. (2007) In vitro assessment of gastrointestinal viability of two photosynthetic bacteria, Rlwdopseudomonas palustris and Rhodobacter sphaeroides. J. Zhejiang Univ. Sci., B8(9), 686-692
  35. Chou, L. and Weimer, B. (1999) Isolation and characterization of acid and bile tolerant isolates from strains of Lactobacillus acidophilus. J. Dairy Sci. 82, 2331-2335

Cited by

  1. Physiological Characteristics and Immunomodulating Activity of Streptococcus macedonicus LC743 Isolated from Raw Milk vol.30, pp.6, 2010,
  2. Physiological Characteristics and GABA Production of Lactobacillus plantarum K255 Isolated from Kimchi vol.33, pp.5, 2013,
  3. Microbiological Hazard Analysis for HACCP System Application to fermented milk vol.16, pp.1, 2015,
  4. Physiological Characteristics and Immunomodulating Activity by Lactobacillus paracasei subsp. paracasei BFI46 Isolated from New-Born Infant Feces vol.30, pp.2, 2010,
  5. A Study on the Sensory Characteristic of Yogurt and Antimicrobial Activity of Lactobacillus plantarum LHC52 Isolated from Kimchi vol.30, pp.2, 2010,