Characteristics of Polymeric Dental Restorative Composites Fabricated from Bis-GMA Derivatives Having Low Viscosity

저점도 Bis-GMA 유도체로부터 제조된 고분자계 치과 수복용 복합재의 특성

  • Jeon, Mi-Young (School of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Song, Jeong-Oh (School of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Kim, Chang-Keun (School of Chemical Engineering and Materials Science, Chung-Ang University)
  • 전미영 (중앙대학교 화학신소재공학부) ;
  • 송정오 (중앙대학교 화학신소재공학부) ;
  • 김창근 (중앙대학교 화학신소재공학부)
  • Published : 2007.11.30


In the polymeric dental restorative composites, the resin matrix mainly contains 70 wt% 2,2-bis[4-(2-hydroxy-3-methacryloyloxy propoxy) phenyl] propane (Bis-GMA), as a base resin and 30 wt% triethylene glycol dimethacrylate (TEGDMA) as a diluent. Even though the viscosity of the resin matrix is rapidly decreased by adding TEGDMA, addition of TEGDMA to the Bis-GMA results in reduction in the mechanical properties and increase in the curing shrinkage of the dental composite. In order to fabricate dental composite exhibiting excellent properties by reducing TEGDMA content in the resin matrix, in this study, Bis-GMA derivatives, which do not contain hydroxyl groups, were used instead of Bis-GMA. The curing characteristics of Bis-GMA derivatives were similar with those of Bis-GMA, while the former exhibited lower viscosity and water absorption than the latter. Comparing the curing shrinkage of the dental composite containing Bis-GMA derivative with that prepared from Bis-GMA, the reduction in curing shrinkage was about 25%. Dental composites prepared from new resin matrices also exhibited low water uptake and better properties in mechanical strength.


  1. M. Donald and D. W. Lorson, J. Am. Dent. Assoc., 92, 1189 (1976)
  2. D. P. Leonard and M. C. Elise, J. Am. Dent. Assoc., 92, 1195 (1976)
  3. J. W. Osborne and S. J. Friedman, J. Prosthet. Dent., 55, 335 (1986)
  4. I. C. Schoonover and W. Sounder, J. Am. Dent. Assoc., 28, 1278 (1941)
  5. E. L. Pashley, R. W. Comer, E. E. Parry, and D. H. Pashley, Oper. Dent., 16, 82 (1991)
  6. M. Staninec and M. Holt, J. Prosthet. Dent, 59, 397 (1988)
  7. R. L. Bowen, U.S. Patent 3,066,112 (1962)
  8. F. Luts and R. W. Phillips, J. Prosth. Dent., 50, 480 (1983)
  9. M. S. Sheela, K. Tamare, and L. Selvy, J. Appl. Polym. Sci, 42, 561 (1991)
  10. R. W. Phillips, Science of Dental Matenms, 8th ed., Saunders, Philadelphia, Chap. 14 (1982)
  11. H. Shintani, T. Inoue, and M. Yamaki, Dent. Mater., 1, 124 (1985)
  12. K. H. Chung, J. Dent. Res., 69, 852 (1990)
  13. K. J. M.Sodewholm, M. Zigan, M. Ragan, W. Fishschwiger, and M. Bergman, J. Dent. Res., 63, 1248 (1984)
  14. J. G. Calais and K. J. M. Sodewholm, J. Dent. Res., 67,836 (1988)
  15. K. J. M. Soderholm and K. J. Roberts, J. Dent. Res., 69, 1812 (1990)
  16. D. C. Smith, Biomed. Mster., 12,119 (1983)
  17. M. Browne, Y. Chaimberg, and A. J. Cohen, J. Appl. Polym. Sci., 44, 671 (1992)
  18. Y. Kim, J. Y. Lee, C. K. Kim, and O. Y, Kim, Polymer (Korea), 28, 426 (2004)
  19. J. S. Jang and S. W. Kim, Polymer(Korea), 18, 584 (1994)
  20. J. L. Mateo, P. Bosch, and A. E. Lozano, Macromolecules, 27, 7794 (1994)
  21. W. J. Bailey, J. L. Chou, P. Z. Feng, B. Issari, V. Kuruganti, and L. L. Zhou, J. MacromoL Sci -Chem., 25, 781 (1988)
  22. O. Kim and T. Lee, J. Korean Ind Eng. Chem., 12, 65 (2001)
  23. E. Bourgeat -Lami and J. Lang, J. Colloid Inter! Sci, 197, 293 (1998)
  24. B. Nystrom, A. Kjoniksen, and C. Iversen, Adv. Colloid Interf. Sci., 79, 81 (1999)