• Sohn, Moo-Young ;
  • Xudong, Yuan ;
  • Jeong, Hyeon-Seok
  • Published : 2007.11.30


The domination number ${\gamma}(G)$ of a graph G=(V,E) is the minimum cardinality of a subset of V such that every vertex is either in the set or is adjacent to some vertex in the set. The bondage number of b(G) of a graph G is the cardinality of a smallest set of edges whose removal from G results in a graph with domination number greater than ${\gamma}(G)$. In this paper, we calculate the bondage number of the Cartesian product of cycles $C_3\;and\;C_n$ for all n.


graph;domination number;bondage number


  1. T. Chang and E. Clark, The domination numbers of the $5{\times}n\;and\;6{\times}n$ grid graphs, J. Graph Theory 17 (1993), no. 1, 81-107
  2. J. E. Dunbar, T. W. Haynes, U. Teschner, and L. Volkmann, `Bondage, Insensitivity, and Reinforcement' in Domination in graphs advanced topics (Marcel Decker, New York,1998), 471-489
  3. M. El-Zahar and C. M. Pareek, Domination number of products of graphs, Ars Combin. 31 (1991), 223-227
  4. J. F. Fink, M. S. Jacobson, L. F. Kinch, and J. Roberts, The bondage number of a graph, Discrete Math. 86 (1990), no. 1-3, 47-57
  5. B. L. Hartnell and D. F. Rall, A characterization of trees in which no edge is essential to the domination number, Ars Combin. 33 (1992), 65-76
  6. L. Y. Kang and J. J. Yuan, Bondage number of planar graphs, Discrete Math. 222 (2000), no. 1-3, 191-198
  7. L. Y. Kang, M. Y. Sohn, and H. K. Kim, Bondage number of the discrete torus $C{\subseteq}n{\times}C{\subseteq}4$, Discrete Math. 303 (2005), no. 1-3, 80-86
  8. S. Klav.zar and S. Sandi, Norbert Dominating Cartesian products of cycles, Discrete Appl. Math. 59 (1995), no. 2, 129-136
  9. B. L. Hartnell and D. F. Rall, Bounds on the bondage number of a graph, Discrete Math. 128 (1994), no. 1-3, 173-177

Cited by

  1. The total bondage number of grid graphs vol.160, pp.16-17, 2012,
  2. On Bondage Numbers of Graphs: A Survey with Some Comments vol.2013, 2013,
  3. Bondage number of the strong product of two trees vol.230, 2017,
  4. The bondage number of the strong product of a complete graph with a path and a special starlike tree vol.08, pp.01, 2016,
  5. Bondage Numbers ofC4Bundles over a CycleCn vol.2013, 2013,
  6. Upper bounds on the bondage number of the strong product of a graph and a tree 2017,
  7. Bondage number of mesh networks vol.7, pp.5, 2012,
  8. Bondage number of strong product of two paths vol.10, pp.2, 2015,