DOI QR코드

DOI QR Code

DNA Cleavage Induced by the Reaction of Salsolinol with Cu,Zn-Superoxide Dismutase

  • Published : 2007.12.20

Abstract

Salsolinol, endogenous neurotoxin, is known to be involved in the pathogenesis of Parkinson's disease (PD). In the present study, we have investigated the oxidative damage of DNA induced by the reaction of salsolinol with Cu,Zn-SOD. When plasmid DNA incubated with salsolinol and Cu,Zn-SOD, DNA cleavage was proportional to the concentrations of salsolinol and Cu,Zn-SOD. The salsolinol/Cu,Zn-SOD system-mediated DNA cleavage was significantly inhibited by radical scavengers such as mannitol, ethanol and thiourea. These results indicated that free radicals might participate in DNA cleavage by the salsolinol/Cu,Zn-SOD system. Spectrophotometric study using a thiobarbituric acid showed that hydroxyl radical formation was proportional to the concentration of salsolinol and was inhibited by radical scavengers. These results indicated that hydroxyl radical generated in the reaction of salsolinol with Cu,Zn-SOD was implicated in the DNA cleavage. Catalase and copper chelators inhibited DNA cleavage and the production of hydroxyl radicals. These results suggest that DNA cleavage is mediated in the reaction of salsolinol with Cu,Zn-SOD via the generation of hydroxyl radical by a combination of the oxidation reaction of salsolinol and Fenton-like reaction of free copper ions released from oxidatively damaged SOD.

References

  1. Ikeda, H.; Markey, C. J.; Markey, S. P. Brain Res. 1993, 575, 285 https://doi.org/10.1016/0006-8993(92)90092-N
  2. Moser, A.; Kompf, D. Life Sci. 1992, 50, 1885 https://doi.org/10.1016/0024-3205(92)90549-5
  3. Niwa, T.; Takeda, T.; Yoshizumi, H.; Tatematsu, A.; Yoshida, M.; Dosterdt, P.; Naoi, M.; Nagatsu, T. Biochem. Biophys. Res. Commun. 1991, 177, 603 https://doi.org/10.1016/0006-291X(91)91831-V
  4. Ohta, S.; Kohno, M.; Makino, Y.; Tachikawa, O.; Hirobe, M. Biomed. Res. 1987, 8, 453 https://doi.org/10.2220/biomedres.8.453
  5. Kim, H. J.; Yoon, H. R.; Washington, S.; Chang, I. I.; Oh, Y. J.; Surh, Y. J. Neurosci. Lett. 1997, 238, 95 https://doi.org/10.1016/S0304-3940(97)00866-5
  6. Kim, H. J.; Soh, Y.; Jang, J. H.; Lee, J. S.; Oh, Y. J.; Surh, Y. J. Mol. Pharmacol. 2001, 60, 440
  7. Ebadi, M. Methods Enzymol. 1991, 205, 363 https://doi.org/10.1016/0076-6879(91)05119-G
  8. Ebadi, M.; Kumari, M. V. R.; Hiramatsu, M.; Hao, R.; Pfeiffer, R. F.; Rojas, P. Restor. Neurol. Neurosci. 1998, 12, 103
  9. Kumari, M. V. R.; Hiramatsu, M.; Ebadi. M. Cell Mol. Biol. 2000, 46, 627
  10. Bowling, A. C.; Schulz, J. B.; Brown, R. H. Jr.; Beal, M. F. Neurochem. 1993, 61, 2322 https://doi.org/10.1111/j.1471-4159.1993.tb07478.x
  11. Hensley, K.; Carney, J. M.; Mattson, M. P.; Aksenova, M.; Harris, M.; Wu, J. F.; Floyd, R. A.; Butterfield, D. A. Proc. Natl. Acad. Sci. USA 1994, 91, 3270 https://doi.org/10.1073/pnas.91.8.3270
  12. Jenner, P.; Dexter, D. T.; Sian, J.; Schapira, A. H.; Marsden, C. D. Ann. Neural. 1992, 32, Suppl: 582
  13. Ihara, Y.; Nobukuni, K.; Takata, H.; Hayabara, T. Neurol. Res. 2005, 27, 105 https://doi.org/10.1179/016164105X18430
  14. Kim, K. S.; Choi, S. Y.; Kwon, H. Y.; Won, M. H.; Kang, T. C.; Kang, J. H. Free Radical. Biol. Med. 2002, 32, 544 https://doi.org/10.1016/S0891-5849(02)00741-4
  15. Choi, S. Y.; Kwon, H. Y.; Kwon, O. B.; Kang, J. H. Biochim. Biophys. Acta 1999, 1472, 651 https://doi.org/10.1016/S0304-4165(99)00189-0
  16. Kang, J. H.; Kim, S. M. Mol. Cells 1997, 7, 553
  17. Kim, S. M.; Kang, J. H. Mol. Cells 1997, 7, 120
  18. Goldstein, S.; Czapski, G. J. Am. Chem. Soc. 1986, 108, 2244 https://doi.org/10.1021/ja00269a020
  19. Gutteridge, J. M. C.; Halliwell, B. Biochem. Pharmacol. 1982, 31, 2801 https://doi.org/10.1016/0006-2952(82)90136-8
  20. Imlay, J. A.; Chin, S. M.; Linn, S. Science 1988, 240, 640 https://doi.org/10.1126/science.2834821
  21. Prutz, W. A. Radiat. Environ. Biophys. 1984, 23, 7 https://doi.org/10.1007/BF01326732
  22. Sagripanti, J.-L.; Kraemer, K. H. J. Biol. Chem. 1989, 264, 1729
  23. Sagripanti, J. L.; Swicord, M. L.; Davis, C. C. Radiat. Res. 1987, 110, 219 https://doi.org/10.2307/3576900
  24. Kang, J. H. J. Biochem. Mol. Biol. 2007, 40, 684 https://doi.org/10.5483/BMBRep.2007.40.5.684
  25. Kang, J. H. Bull. Korean Chem. Soc. 2005, 26, 1251 https://doi.org/10.5012/bkcs.2005.26.8.1251
  26. Cerruti, P. A. Science 1984, 227, 375
  27. Feldberg, R. S.; Carao, J. A.; Paradise, R. J. Free Radic. Biol. Med. 1985, 1, 459 https://doi.org/10.1016/0748-5514(85)90161-8
  28. Chiou, S. H. J. Biochem. (Tokyo) 1983, 94, 1259 https://doi.org/10.1093/oxfordjournals.jbchem.a134471
  29. Reed, C. J.; Douglas, K. T. Biochem. Biophys. Res. Commun. 1989, 162, 1111 https://doi.org/10.1016/0006-291X(89)90788-2
  30. Rowley, D. A.; Halliwell, B. Arch. Biochem. Biophys. 1983, 225, 279 https://doi.org/10.1016/0003-9861(83)90031-0
  31. Stoewe, R. S.; Prutz, W. A. Free Radical Biol. Med. 1987, 3, 97 https://doi.org/10.1016/S0891-5849(87)80003-5
  32. Bindoli, A.; Rigobello, M. P.; Deeble, D. J. Free Radic. Bio. Med. 1992, 13, 391 https://doi.org/10.1016/0891-5849(92)90182-G
  33. Tainer, J. A.; Gertzoff, E. D.; Richardson, J. S.; Richardson, D. C. Nature 1983, 306, 284 https://doi.org/10.1038/306284a0
  34. Pall, H. S.; Williams, A. C.; Blake, D. R.; Lunec, J.; Gutteridge, J. M.; Hall, M.; Taylor, A. Lancet. 1987, 2, 238
  35. Multhaup, G.; Schlicksupp, A.; Hesse, L.; Behler, D.; Ruppert, T.; Masters, C. L.; Beyreuther, K. Science 1996, 271, 1406 https://doi.org/10.1126/science.271.5254.1406
  36. Martilla, R. J.; Lorezo, H.; Rinne, U. K. J. Neurrol Sci. 1988, 86, 32
  37. Saggu, H.; Cooksey, J.; Dexter, D.; Wells, F. R.; Lees, A.; Jenner, P.; Marsden, C. D. J. Neurochem. 1989, 53, 692 https://doi.org/10.1111/j.1471-4159.1989.tb11759.x