Enhancement of Bacteriocin Production by Bacillus subtilis cx1 in the Presence of Bacillus subtilis ATCC6633

Bacillus subtilis ATCC6633이 Bacillus subtilis cx1의 박테리오신 생산에 미치는 유도효과

  • Chang Mi (Department of Food and Nutrition, Chosun University) ;
  • Chang Hae-Choon (Department of Food and Nutrition, Chosun University)
  • 장미 (조선대학교 식품영양학과) ;
  • 장해춘 (조선대학교 식품영양학과)
  • Published : 2006.09.01

Abstract

BSCX1 was an antimicrobial peptide produced by Bacillus subtilis cx1. Attempts were made to determine the location of inducing factor in the bacteriocin-sensitive cell affecting bacteriocin BSCX1 production. Mixed culture of the bacteriocin producer strain B. subtilis cx1 and its sensitive strain B. subtilis ATCC6633, increased production of bacteriocin BSCX1. The result suggested the presence of a bacteriocin inducing factor in the sensitive strain. The inducing factor was localized in the cell debris and intracellular fraction of B. subtilis ATCC6633. Bacteriocin BSCX1 inducing factor was found to be highly stable in the pH range 2.5-9.5, but inactivated within 3h over $50^{\circ}C$, and treatment with proteinase K destroyed its inducing activity, this result suggested that the inducing factor should be a proteinaceous nature.

References

  1. Anderssen, E. L., D. B. Diep, J. F. Nes, V. G. H. Eijsink, and J. Nissen-Meyer. 1998. Antagonistic activity of Lactobacillus plantarum C11: two new-peptide bacteriocins, plantaricin EF and JK and the induction factor plantaricin A. Appl. Environ. Microbiol. 64: 2269-2272
  2. Antonio, M., J. Rufino, and R. Jose Luis. 2004. Production of plantaricin NC8 by Lactobacillus plantarum NC8 is induced in the presence of different types of gram-positive. Arch. Microbiol. 181: 8-16 https://doi.org/10.1007/s00203-003-0606-8
  3. Barefoot, S. F., Y. R. Chen, T. A. Bodine, M. Y. Shearer, and M. D. Hughes. 1994. Identification and purification of a protein that induces production of the Lactobacillus acidophilus bacteriocin Lactacin B. Appl. Environ. Microbiol. 60: 3522-3528
  4. Biswas, S. R., P. Ray, M. C. Johnson, and B. Ray. 1991. Influence of growth conditions on the production of a bacteriocin, pediocin AcH, by Pediococcus acidilactici H. Appl. Environ. Microbiol. 57: 1265-1267
  5. de Vuyst, L., R. Calleweart, and K. Crabbe. 1996. Primary metabolite kinetics of bacteriocin biosynthesis by Lactobacillus amylovorus and evidence for stimulation of bacteriocin production under unfavourable growth conditions. Microbiology 142: 817-827 https://doi.org/10.1099/00221287-142-4-817
  6. Diep, D. B., L. S. Havarsein, and I. F. Nes. 1995. A bacteriocin-like peptide induces bacteriocin synthesis in Lactobacillus plantarum C11. Mol. Microbiol. 18: 631-639 https://doi.org/10.1111/j.1365-2958.1995.mmi_18040631.x
  7. Eijsink, V. G. H., M. B. Brurberg, P. H. Middelhoven, and I. H. Nes. 1996. Induction of bacteriocin production in Lactobacillus sake by a secreted peptide. J. Bacteriol. 178: 2232-2237
  8. Franz, C. M. A. P., M. E. Stiles, and M. J. Belkum. 2000. Simple method to identify bacteriocin induction peptides and to auto-induce bacteriocin production at low cell density. FEMS Microbiol. Lett. 186: 81-185
  9. Jack, R. W., J. R. Tagg, and B. Ray. 1995. Bacteriocin of gram-positive bacteria. Microbiol. Rev. 59: 171-200
  10. Junttila, J., S. E. Niemela, and J. Hirn. 1988. Minimum growth temperatures of Listeria monocytogenes and mom hemolytic listeria. J. Appl. Bacteriol. 65: 321-327
  11. Kim, S. I., I. C. Kim, and H. C. Chang. 1999. Isolation and identification of antimicrobial agent producing microorganisms and sensitive strain from soil. J. Kor. Soc. Food Sci. Nutr. 28: 526-533
  12. Kim, S. I., J. Y. Chang, I. C. Kim, and H. C. Chang. 2001. Characterization of bacteriocin from Bacillus subtilis cx1. Kor. J. Appl. Microbiol. Biotechnol. 29: 50-55
  13. Kleerebezem, M. and L. E. Quadri. 2001. Peptide pheromone-dependent regulation of antimicrobial peptide production in gram-positive bacteria: a case of multicellular behavior. Peptide 22: 1579-1596 https://doi.org/10.1016/S0196-9781(01)00493-4
  14. Klein, C., C. Kaletta, and K. D. Entian. 1993. Biosynthesis of the lanthibiotic subtilin is regulated by a histidine kinase/response regulator system. Appl. Environ. Microbiol. 59: 296-303
  15. Klein, C. and K. D. Entian. 1994. Gene involved in self protection against the lantibiotic subtilin produced by Bacillus subtilis ATCC6633. Appl. Environ. Microbiol. 60: 2793-2801
  16. Kuipers, O. P., M. M. Beerthuyzen, P. G. de Ruyter, E. J. Luesink, and W. M. de Vos. 1995. Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J. Biol. Chem. 270: 27299-27304 https://doi.org/10.1074/jbc.270.45.27299
  17. Kuiper, O. P., P. G. de Ruyter, M. Kleerebezem, and W. M. de Vos. 1998. Quorum sensing-controlled gene expression in lactic acid bacteria. J. Bacteriol. 64: 15-21
  18. Lars, A. and A. Holck. 1995. The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sake Lb706. J. Bacteriol. 177: 2125-2137
  19. Lee, K. H., H. M. Kwon, C. H. Hong, and S. G. Park. 1999. Characterization of salmonella species isolated from poultry slaughterhouse and pork meat processing plants. J. Food Hyg. Safety 14: 97-103
  20. Lee, S. H. and Y. S. Lim. 1997. Antimicrobial effects of schizandra chinensis extract against Listeria monocytogenes. Kor. J. Appl. Microbiol. Biotechnol. 25: 442-447
  21. Mah, J. H., K. S. Kim, J. H. Park, M. W. Byun, Y. B. Kim, and H. J. Hwang. 2001. Bacteriocin with a broad antimicrobial spectrum, produced by Bacillus sp. isolated from kimchi. J. Microbiol. Biotechnol. 11: 577-584
  22. Moll, G. N., G. C. K. Roberts, W. N. Konings, and A. J. M. Driessen. 1996. Mechanism of lantibiotic-induced poreformation. Antonie van Leeuwenhoek 69: 185-191 https://doi.org/10.1007/BF00399423
  23. Nislen, T., I. F. Nes, and H. Holo. 1998. An exported inducer peptide regulates bacteriocin production in Enterococcus faecium CTC492. J. Bacteriol. 180: 1848-1854
  24. Paik, H. D., N. K. Lee, K. H. Lee, Y. I. Hwang, and J. G. Pan. 2000. Identification and partial characterization of cerein BS229, a bacteriocin produced by Bacillus cereus BS229. J. Microbiol. Biotechnol. 10: 195-200
  25. Park, S. Y., Y. J. Yang, Y. B. Kim, J. H. Hong, and C. Lee. 2002. Characterization of subtilein, a bacteriocin from Bacillus subtilis CAU131(KCCM 10257). J. Microbiol. Biotechnol. 12: 228-234
  26. Reichmnn, P. and R. Hakenbeck. 2000. Allelic variation in a peptide-inducible two-component system of Streptococcus pneumoniae. FEMS Microbiol. Lett. 190: 231-236 https://doi.org/10.1111/j.1574-6968.2000.tb09291.x
  27. Sip, A., W. Grajek, and P. Boyaval. 1998. Enhancement of bacteriocin production by Carnobacterium divergens AS7 in the presence of a bacteriocin-sensitive strain Carnobacterium piscicola. Int. J. Food Microbiol. 42: 63-69 https://doi.org/10.1016/S0168-1605(98)00062-2
  28. Vincent, G. H. E., M. B. Brurberg, P. H. Middelhoven, and I. F. Nes. 1996. Induction of bacteriocin production in Lactobacillus sake by a secreted peptide. J. Bacteriol. 178: 2232-2237
  29. Wood, K. V. and M. Woodbine. 1979. Low temperature virulence of Listeria monocytogenes in the avian embryo. Zbi. Bakteriol. hyg. I. Abt. Orig. A243: 74-81
  30. Yang, E. J., J. Y. Chang, H. J. Lee, J. H. Kim, D. K. Chung, J. H. Lee, and H. C. Chang. 2002. Characterization of the antagonistic activity against Lactobacillus plantarum and induction of bacteriocin production. Kor. J. Food Sci. Technol. 34: 311-318